
Module	7:	 Object	Oriented	Development	

Stage 1
Semester 2
Module Title Object-Oriented Development
Module Number/Reference 7
Module Status
(Mandatory/Elective)

Mandatory

Module ECTS credit 10
Module NFQ level (only if
applicable)

8

Pre-requisite Module Titles None
Co-requisite Module Titles None
Is this a capstone module? (Yes or
No)

No

List of Module Teaching Personnel
Mr Tony Mullins
Mr Eoin Carroll
Mr Sean Russell

Contact Hours Non-contact Hours
Total
Effort

(Hours)

L
ectu

re

P
ractical

T
u

to
rial

S
em

in
a r

A
ssig

n
m

ent

P
lacem

en
t

Ind
ep

end
en

t w
o

rk

24 36 60 80 200
Allocation of Marks (Within the Module)

 Continuous
Assessment Project Practical Final

Examination Total

Percentage
contribution 60% 40% 100%

Intended Module Learning Outcomes

On successful completion of this module learners will be able to:

1. explain the main reasons behind the development of the object-oriented
model of software development;

2. implement classes that encapsulate both simple and complex behaviours;
3. explain the relationship between encapsulation and public interfaces;
4. define both inheritance and composition and the differences between them;
5. design and implement classes that use inheritance and composition;

6. apply abstract concepts in an object oriented manner
7. develop confidence in and awareness of the capabilities of object oriented

development
8. develop high quality software that is reliable, reusable and maintainable

Module Objectives

This module builds on the work completed in the first semester Programming module
and extends the learners knowledge of programing by giving a comprehensive
analysis of object-oriented programming. This paradigm leads to software
architectures based on the objects every system or subsystem manipulates. In this
view software systems are operational models of real or virtual world activities based
around the objects that populate these worlds: people, cars, houses, stacks, sets,
queues. As in all programming modules, a key objective is the acquisition, on behalf
of the learner, of good software engineering skills and the application of these skills
to the design and implementation of software components.

Module Curriculum

Introduction and motivation

• Review of procedural paradigm and its limitations.
• Outline of key reasons for development of object-oriented paradigm

Classes and Objects

• Encapsulation: class definition, private, public modifiers, public methods.
• Examples of class definitions and programs that interact with public class

interfaces.

Composition and Inheritance

• Composing new classes from existing classes.
• Protecting encapsulation.
• Inheritance and class hierarchies.
• Access modifier protected.
• Polymorphism, multiple inheritance and interfaces.
• Abstract classes.
• Programming with all of above.

Immutable objects

• Defining classes that have immutable state.
• Examples from Java – String, Integer, Double, Boolean, Character.
• Programming with immutable classes.

Object class
• Need to override methods toString, equals and hashCode.
• The comparable interface and implementing the compareTo method.
• Examples of classes that implement comparable interface and override

equals, hashCode and toString.
• Hashing functions.
• Issues around problem of cloning and copy constructors.
• The equals contract in Java and issues that arise around inheritance and

satisfying the equals contract.

Static Members and Enumerated Types

• Class static members.
• Singleton classes.
• Enumerated types.
• Programming examples of each one.

Robustness and Exceptions

• Examples of the different types of exception and methods for both throwing
and catching exceptions.

• Programming with exceptions. Writing exception handlers.

Collection classes

• Genericity and the Collection classes. Sets, Lists, ArrayLists and Maps.
• Using collection classes and user-defined classes.
• Traversing collections.
• Programming problems that use Collection data structures.

Reading lists

Mullins, T. Object-Oriented Programming and the Story of Encapsulation in Java,
Griffith College Dublin, 2011.

Meyer, B. Object-Oriented Software Construction (2nd Edition), Prentice-Hall
Professional Technical Reference, 2000

Barnes, David. Object-Oriented Programming with Java, Prentice-Hall, 2000

Niño, J. & Hosch, F. A. Introduction to Programming and Object-Oriented Design
Using Java (3rd Edition), Wiley, 2008

Eliens Anton. Principles of Object-Oriented Software Development, Addison-Wesley,
1994

Module Learning Environment

Accommodation

Lectures are carried out in classrooms/lecture halls in the College. Lab tutorials are
carried out in computer labs throughout the Campus. All have the language software
required to deliver the programme.

Library

All learners have access to an extensive range of physical and electronic (remotely
accessible) library resources. The library monitors and updates its resources on an
on-going basis, in line with the College’s Library Acquisition Policy. Lecturers update
reading lists for this course on an annual basis as is the norm with all courses run by
Griffith College.

Module Teaching and Learning Strategy

The module is delivered through a combination of lectures and practical lab
programming sessions. The learners complete a series of worksheets throughout
the module that are directly related to the material covered in lectures. The
emphasis is on developing sound software engineering skills in practical
programming based on theoretical knowledge.

Module Assessment Strategy

The module assessment consists of a series of continuous assignments and a final
examination. Each week learners are required to complete a series of programming
tasks that relate to the material covered in lectures. The practical lab sessions are
used to enforce concepts covered in the lectures and the worksheets are used to
ensure that learners are keeping up with the material as it is delivered. Lab sessions
are also used to deal with issues emerging from the worksheets. All work submitted
by learners is assessed and comments are given to individual learners. All
assessment goes to giving a final grade for the work completed by the learner.

Element
No

Weighting Type Description Learning Outcome
assessed

1 60% Weekly Lab
Book
Submission

A series of weekly lab
books designed to
teach programming
concepts

1-8

2 40% Closed Book
Examination

End of Module
Examination

1-7

