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Module 35 Artificial Intelligence & Robotics 
 

Module title Artificial Intelligence & Robotics 
Module NFQ level (only if an NFQ level can be 
demonstrated) 

8 

Module number/reference BSCH-AIR 

Parent programme(s)  
Bachelor of Science (Honours) in 
Computing Science 

Stage of parent programme Award stage 
Semester (semester1/semester2 if applicable) Semester 2 
Module credit units (FET/HET/ECTS) ECTS  
Module credit number of units 5 
List the teaching and learning modes Direct, Blended 
Entry requirements (statement of knowledge, skill 
and competence) 

Learners must have achieved programme 
entry requirements. 

Pre-requisite module titles BSCH-CP, BSCH-OOP, BSCH-CD 
Co-requisite module titles None 
Is this a capstone module? (Yes or No) No 
Specification of the qualifications (academic, 
pedagogical and professional/occupational) and 
experience required of staff (staff includes 
workplace personnel who are responsible for 
learners such as apprentices, trainees and learners 
in clinical placements)   

Qualified to as least a Bachelor of Science 
(Honours) level in Computer Science or 
equivalent and with a Certificate in 
Training and Education (30 ECTS at level 9 
on the NFQ) or equivalent. 

Maximum number of learners per centre (or 
instance of the module) 

60 

Duration of the module 
One Academic Semester, 12 weeks 
teaching 

Average (over the duration of the module) of the 
contact hours per week  

3 

Module-specific physical resources and support 
required per centre (or instance of the module) 

One class room with capacity for 60 
learners along with one computer lab with 
capacity for 25 learners for each group of 
25 learners 
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Analysis of required learning effort 

 
Minimum ratio 

teacher / learner 
Hours 

Effort while in contact with staff   
 Classroom and demonstrations 1:60 18 
 Monitoring and small-group teaching 1:25 18 
 Other (specify)   
Independent Learning   
 Directed e-learning   
 Independent Learning  57 
 Other hours (worksheets and assignments)  32 
 Work-based learning – learning effort    
Total Effort  125 

 
Allocation of marks (within the module) 

 
Continuous 
assessment 

Supervised 
project 

Proctored practical 
examination 

Proctored written 
examination 

Total 

Percentage 
contribution 

40% 60%   100% 

 
Module aims and objectives 
The aim of this module is to enable the learner to embody an artificial intelligent agent 
in the physical or virtual world.  The virtual hardware or physical hardware, 
programmed behaviours, and algorithms will be toughly understood, implemented, 
and customized by the learners.  
 
This aim will be met through the pursuit of the following objectives: 
 

• To familiarize learners with a number of AI problems including probabilistic 
inference, planning and search, localization, tracking and control.  

• To equip learners with skills in representing these problems and their solutions 
with appropriate notation.  

• To assist learners in expanding their programming competencies to include a 
programming language suitable for implementing AI behaviours and porting 
them to physical or virtual robotics hardware. 

• To support learners in the sequence of: identifying the problem type, selecting 
the appropriate AI algorithmic solution and implementing this AI algorithmic 
solution in an appropriate programming language. 

• To expose learners to a range of physical and virtual robotic hardware and 
assist them in evaluating it suitability to perform AI tasks.   

• To provide learners with a framework to evaluate the performance of robots 
performing AI tasks.  
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Minimum intended module learning outcomes 
On successful completion of this module, the learner will be able to: 
 

1. Discuss the major challenges facing AI. 

2. Select and apply appropriate AI algorithms to solve real world problems.  

3. Represent logical and geometric problems with appropriate notation.  

4. Evaluate the suitability of physical and simulated robotic hardware to 
perform AI tasks.  

5. Programme physical or simulated robots to perform AI tasks. 

6. Deploy and evaluate robotic performance of AI tasks 

 
Rationale for inclusion of the module in the programme and its contribution to the 
overall MIPLOs 
The growth of the technology sector in the area of AI and robotics can be exemplified 
through many of today’s devices including the control system in self-drive cars and 
drones.  Investment in AI based technology products is increasing resulting in an 
increased demand for computer scientists in this area.  
 
In this module learners take a number of modules in which they construct programs 
to solve well defined problems many of which have optimal solutions.  This module 
aims to expand the set of problems to include those which may not have optimal 
solutions or have solutions which depend on the perception of external factors or 
circumstances. 
 
The module empowers learners to see their programming solutions manifest in the 
physical or virtual world.  
 
Appendix 1 of the programme document maps MIPLOs to the modules through which 
they are delivered. 
 
Information provided to learners about the module 
Learners receive a programme handbook to include module descriptor, module 
learning outcomes (MIMLO), class plan, assignment briefs, assessment strategy, and 
reading materials. 
 
 
Module content, organisation and structure 
AI Introduction 

• What is AI 
• The Foundations and History of AI 
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• State of the Art 
• What is Planning 
• Search Localization Tracking  
• Control 

Robotics Introduction 
• Welcome 
• Quadrotors 
• Flying Principle 
• Quadrotor Research 

 
Linear Algebra & Geometry 

• Linear Algebra 
• 2D Geometry 
• 3D Geometry 

 
Sensors 

• Sensors 
 
Actuators & Control 

• Motors & Controllers 
• Feedback Control 
• Kinematics & Dynamics 
• PID Control 

 
Probability Theory, Bayes Rule & Grid Filter 

• State Estimation 
• Probability Theory 
• Bayes Rule 

 
Probabilistic State Estimation 

• Bayes Filter 
• Histogram Filter 
• Kalman Filter 
• Extended Kalman Filter 
• Particle Filter 

 
Search  

• A* 
• Dynamic Programming 
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Visual Motion Estimation 
• 2D Motion Estimation 
• Visual Odometry 
• Resume Course  

 
Visual SLAM 

• Visual Navigation with a Parrot ARdrone 
• Tracking and Mapping with Signed Distance Functions 
• Direct Methods for Visual SLAM 

 
Module teaching and learning (including formative assessment) strategy 
The module is taught as a combination of lectures and lab sessions.  The lecture 
sessions assist the learner in exploring the theoretical underpinnings of AI & Robotics.  
The practical lab sessions give learners the opportunity to implement AI algorithms 
and embed them in robots.  Learners also experience first-hand how their robots 
interact with the world based on their programmed AI behaviours.  Through 
prescribed experimentation, and learner collaboration, learners embody their AI 
knowledge in robots.   
 
Assessment is divided into 3 elements.  There are two take home assignments that 
assess the learner’s competency in specific areas of the syllabus, while giving them 
increasing larger problems to solve.  There is a group project to be completed which 
tests the learners’ understanding of the theoretical material and allows them to realize 
a robot exhibiting AI behaviours.   
 
Timetabling, learner effort and credit 
The module is timetabled as one 1.5-hour lectures and one 1.5-hour lab per week.   
 
The number of 5 ECTS credits assigned to this module is our assessment of the amount 
of learner effort required.  Continuous assessment spreads the learner effort to focus 
on small steps before integrating all steps into a realizing a robot exhibiting AI 
behaviours. 
 
There are 36 contact hours made up of 12 lectures delivered over 12 weeks with 
classes taking place in a classroom.  There are also 12 lab sessions delivered over 12 
weeks taking place in a fully equipped computer lab.  The learner will need 57 hours 
of independent effort to further develop the skills and knowledge gained through the 
contact hours.  An additional 32 hours are set aside for learners to work on worksheets 
and assignments that must be completed for the module. 
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The team believes that 125 hours of learner effort are required by learners to achieve 
the MIMLOs and justify the award of 5 ECTS credits at this stage of the programme. 
 
Work-based learning and practice-placement 
There is no work based learning or practice placement involved in the module. 
 
E-learning 
The college VLE is used to disseminate notes, advice, and online resources to support 
the learners. The learners are also given access to Lynda.com as a resource for 
reference.  
 
 
Module physical resource requirements 
Requirements are for a classroom for 60 learners equipped with a projector, and a 25 
seater computer lab for practical sessions with access to Python and Java development 
environments and associated libraries (this may change should more suitable 
technologies become available). 
 

Reading lists and other information resources 
Recommended Text 
Russell, S. (2016) Artificial intelligence: a modern approach, global edition. Upper 
Saddle River: Pearson Education Limited. 

Martinez, A., Fernández, E. (2015) Learning ROS for robotics programming. 
Birmingham: Packt Publishing 
 
Secondary Reading: 
Joseph, L. (2018) Learning Robotics Using Python. Birmingham: Packt Publishing 

Parot.com (2016) Developer Documentation  
http://developer.parrot.com/docs/SDK3/ 3  

Montemerlo, M. and Thrun, S. (2007) FastSLAM. Berlin: Springer. 

 
Specifications for module staffing requirements  
For each instance of the module, one lecturer qualified to at least Bachelor of Science 
(Honours) in Computer Science or equivalent, and with a Certificate in Training and 
Education (30 ECTS at level 9 on the NFQ) or equivalent..  Industry experience would 
be a benefit but is not a requirement.   
 

                                                        
3 Last accessed 26/07/2018 
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Learners also benefit from the support of the programme director, programme 
administrator, learner representative and the Student Union and Counselling Service. 
 
 
Module Assessment Strategy 
The assignments constitute the overall grade achieved, and are based on each 
individual learner’s work.  The continuous assessments provide for ongoing feedback 
to the learner and relates to the module curriculum. 
 

No. Description MIMLOs Weighting 

1 
Two take home assignments that assess the 
learner’s competency in specific areas of the 
syllabus  

1,2,3 40% 

3 Project to be completed with a partner. 1,2,4,5,6 60% 
 
All repeat work is capped at 40%. 
 
Sample assessment materials 
 
Note: All assignment briefs are subject to change in order to maintain current content. 
 
 
 

Course BSCH 
Stage / Year 4 
Module AI & Robotics 
Semester 2 
Assignment Assignment 1 
Date of Title Issue x/x/x  
Assignment Deadline x/x/x (2 weeks after issue) 
Assignment Submission Upload to Moodle  
Assignment Weighting 20% of module 

 
Submission Details:  
Please be sure to submit 

• A single zipped file containing  
o This document complete with answers, mathematical calculations can 

be inserted using image files of a small size.  
o Code files for appropriate questions. 
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Section 1. Representations of Rotations – 25% 

With the rotation visualizer provided on the course homepage you can 
animate your rotations: 

• animateRotationMatrix(0,-1,0,1,0,0,0,0,1) 
• animateEuler(0, 90, 0) 
• animateAxisAngle( 1,0,0,90) 
• animateQuaternion(0,0,1,0) [note that the parameters here 

are animateQuaternion(qx,qy,qz,qw) as opposed to the exercise below!] 
 

Rotation Matrices 
1. Your quadrotor has crashed and is lying tipped over facing towards 

you in the field. What rotation do you have to perform to align it with 
your view again, i.e., with the camera facing forward and thus away 
from you? Enter the rotation matrix (format: "1,0,0; 0,1,0; 0,0,1"). Show 
your solution.  

(3 
mark) 

2. How many more parameters do 3D rotation matrices have compared 
to minimal representations. Explain your answer.    
  

(3 mark) 
Euler Angles 

3. How many different Euler angle conventions are there? Explain your 
answer.  

(3 
mark) 

4. How would the rotation above be parametrized with Euler angles in the 
roll pitch yaw convention? Enter the RPY angles in degree (format: 
"30,40,50 "). Explain your answer.      
   

(3 mark) 

Euler to Rotation Matrix 
5. Given the RPY Euler angles in degree (90, 0, 90) compute the rotation 

matrix (format: "1,0,0; 0,1,0; 0,0,1"). Show your calculations.  
  

(3 mark) 

 
Angle/Axis Representation 

6. How many parameters has the Angle-Axis representation. Justify your 
answer.          
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(3 mark) 
 

Advantages of Representations 
7. Which representation are easy to concatenate?      

a. Rotation Matrices 
b. Euler Angles 
c. Angle-Axis 
d. Quernions 

(2 mark) 
 

8. Which representations can be minimal?         
e. Rotation Matrices 
f. Euler Angles 
g. Angle-Axis 
h. Quernions 

(2 mark) 
9. Which representations are easy to invert?       

i. Rotation Matrices 
j. Euler Angles 
k. Angle-Axis 
l. Quernions 

(2 mark) 
10. Which representation is unique? (1mark) 

m. Rotation Matrices 
n. Euler Angles 
o. Angle-Axis 
p. Quernions 

(1 mark) 
 

 

Section 2. 3D Transformations – 25% 
 

1. In this exercise we want to compute the position of the quadrotor from 
observations of visual markers. The markers are detected in images 
recorded from the downfacing camera of the quadrotor. We also 
assume the position of the markers in the world are known. 
 

The following image illustrates the relations between the world, 
quadrotor and marker coordinate frames. The transformations from the 
world to the marker TWM and from the quadrotor to the marker TQM  are 
known. Your task is to compute the transformation from the world to 
the quadrotor TWQ given the two other transformations.  



147  

 
In the code below implement the 
predefined compute_drone_pose function. Its parameters are the global 
marker pose TWM and the observed marker pose TQM. Both are 
instances of the Pose3D class. It has to return the quadrotor pose TWQ.  

1. import numpy as np   
2.    
3. class Pose3D:   
4.     def __init__(self, rotation, translation):   
5.         self.rotation = rotation   
6.         self.translation = translation   
7.            
8.     def inv(self):   
9.         '''''  
10.         Inversion of this Pose3D object  
11.           
12.         :return inverse of self  
13.         '''   
14.         # TODO: implement inversion   
15.         inv_rotation = self.rotation   
16.         inv_translation = self.translation   
17.            
18.         return Pose3D(inv_rotation, inv_translation)   
19.        
20.     def __mul__(self, other):   
21.         '''''  
22.         Multiplication of two Pose3D objects, e.g.:  
23.             a = Pose3D(...) # = self  
24.             b = Pose3D(...) # = other  
25.             c = a * b       # = return value  
26.           
27.         :param other: Pose3D right hand side  
28.         :return product of self and other  
29.         '''   
30.         # TODO: implement multiplication   
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31.         return Pose3D(self.rotation, self.translation)   
32.        
33.     def __str__(self):   
34.         return "rotation:\n" + str(self.rotation) + "\ntranslation:\n" + str

(self.translation.transpose())   
35.    
36. def compute_quadrotor_pose(global_marker_pose, observed_marker_pose):   
37.     '''''  
38.     :param global_marker_pose: Pose3D   
39.     :param observed_marker_pose: Pose3D  
40.       
41.     :return global quadrotor pose computed from global_marker_pose and obser

ved_marker_pose  
42.     '''   
43.     # TODO: implement global quadrotor pose computation   
44.     global_quadrotor_pose = None   
45.    
46.     return global_quadrotor_pose  

(25 marks) 
	

Section 3. Probability Theory – 25% 
Enter all decimal numbers with at least two digits after the decimal points. 
More digits are always allowed. Examples: 

• 0.314	->	0.31 
• 5.675	->	5.68 
• 0.56	->	0.56 
• 0.2	->	0.2 

Probability 
1. You have built two quadrotors guarding your house. From earlier 

experiments with a single quadrotor, we observed that the probability 
mass function describing the presence of a quadrotor 
is P(X)=(0.2,0.2,0.6) where X∈{house,street,backyard}. For this exercise, 
we assume the locations of both quadrotors are independent of each 
other.What is the probability both quadrotors are in the backyard at 
the same time?  

(6 mark) 
Conditional Probability 

2. Assume you have installed a sophisticated vision system on your 
quadrotor to recognize doors, i.e., P(door	is	detected∣quadrotor	is	in	
front	of	door)=0.9. However, navigating through a door only suceeds 
with a probability of 0.7, i.e., P(success∣door	is	detected)=0.7.What is 
the probability of successfully detecting and traversing a door when 
the quadrotor is in front of a door? 

(6 mark) 
Joint Probability 

3. Now let's further assume, that there is a single charging station in the 
backyard. To prevent bumping into each other, the quadrotors are 
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communicating with each other to ensure that they are not flying in the 
same area. As a result, their locations are not independent of each 
other anymore. The resulting joint probability table now looks as 
follows: 

P(X,Y) X=House X=Street X=Backyard 

Y=House 0.0 0.1 0.2 

Y=Street 0.1 0.0 0.2 

Y=Backyard 0.2 0.2 0.0 

What is the probability of (at least) one quadrotor being in the 
backyard?  

(6 mark) 
 

Bayes Rule 
4. Imagine a quadrotor seeks its charging station which is marked with 

many bright lamps. 

The quadrotor is equipped with a binary brightness sensor that can 
measure either bright or ¬bright. 

The binary world state is either home or ¬home with the 
prior P(home)=0.2. 

Moreover we know: 

P(bright|home)=0.8 

and 

P(bright|¬home)=0.3	

Assume the robot observes light, what is the 
probability P(home|bright) that it is above the charging base? 
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(7
ma
rks) 

Section 4. Statistics – 25 % 
Mean, Variance & Standard Deviation 

1. Please compute the sample mean, sample variance and standard 
deviation of the following time series: −1,2,3,1,1	

(7	marks)  

Statistics with Numpy 
2. In this exercise you are given the time series of a (stationary) quadrotor 

equipped with a GPS receiver. 

Please calculate the statistics with numpy. 

Note: you can use the numpy functions mean, var, cov. Use the two 
parameter version of cov, i.e., to compute the covariance of two vectors 
a and b use numpy.cov(a, b). 

 

1. import numpy as np   
2.    
3. def compute_means(lat,lon,alt):   
4.     # TODO: implement mean computation   
5.     mean_lat = None   
6.     mean_lon = None   
7.     mean_alt = None   
8.     return (mean_lat,mean_lon,mean_alt)   
9.    
10. def compute_vars(lat,lon,alt):   
11.     # TODO: implement variance computation   
12.     var_lat = None   
13.     var_lon = None   
14.     var_alt = None   
15.     return (var_lat,var_lon,var_alt)   
16.    
17. def compute_cov(lat,lon,alt):   
18.     # TODO: implement covariance computation   
19.        
20.     cov_lat_lon = None   
21.     cov_lon_alt = None   
22.     cov_lat_alt = None   
23.     return (cov_lat_lon,cov_lon_alt,cov_lat_alt)   

(10	marks)  

Accuracy of GPS 
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3. The manufacturer of a high quality GPS receiver claims that his device 
achieves the following accuracies: 

• stddev(latitude)=5.4477688039°⋅10−06 
• stddev(longitude)=9.89285349017°⋅10−06 

For the latitude 48.262° of Munich, 

• 1° of latitude corresponds to 111195.38097356868 m, and 
• 1° of longitude corresponds to 74246.69042433369 m. 

What is the corresponding standard deviation of the GPS receiver in 
latitude in m in Munich?   

 

What is the corresponding standard deviation of the GPS receiver in 
longitude in m in Munich? 

(8	marks)  
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Course BSCH 
Stage / Year 4 
Module AI & Robotics 
Semester 2 
Assignment Assignment 2 
Date of Title Issue x/x/x  
Assignment Deadline x/x/x (2 weeks after issue) 
Assignment Submission Upload to Moodle  
Assignment Weighting 20% of module 

 
Question 1: Biasdness of Particle Filters – 25% 

In class, we discussed in length the fact that Monte Carlo Localization (and particle 
filters) are biased for finite sample sets, as a result of the way particles are resampled. 
In this question, you are asked to quantify this bias. 
To simplify things, consider a world with 4 possible robot locations: S = {s1,s2,s3,s4} �________

 ____ _____
 _____ 

 

s1 s2 

s3 s4 

 

Initially, we draw N >= 1 samples uniformly from among those locations—-as 
usual, it is perfectly acceptable if more than one sample is generated for any of the 
locations S. Let now z be our first actual sensor measurement. Suppose that is 
characterized by the following conditional probabilities: 

 

 
 
As explained in class, these probabilities are used to generate importance factors, 
which are subsequently normalized and used for resampling. For simplicity, let us 
assume we only generate one new sample in the resampling process, regardless of N. 
This sample might correspond to any of the four locations in S. Thus, the sampling 
process defines a probability distribution over S . 
Questions: 

 
1.1 What is the resulting probability distribution over for this new sample? 

Answer this question separately for N=1, …., 10, and for # = 	∞. Your answers 
have to be exact (truncation errors are acceptable). 

1.2 What is the KL divergence between those probability distributions and the 
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“true” posterior, derived from Bayes filters? Again, answer this question 
separately for N=1, …., 10, and for # = 	∞. The KL divergence between a -. 
distribution and a “true” distribution - is given by 

 
 

 

Again, your answers have to be exact (up to truncation errors). 
 

1.3 Prove the correctness of your answers for N=1, N= 2, and N = ∞. 
 

1.4 What modification of the problem formulation would guarantee that the 
specific estimator above is unbiased even for finite values of N? Provide at 
least two such modifications (each of which should be sufficient). 

 
Hint: I wrote a deterministic program to calculate some of these results. 

 
 

Question 2: Kalman Filter Localization – 25% 
 
Implement a Kalman-style filter for the following problem. You have a robot whose 
state is x, y, θ. Initially, it is at pose 0; 0; 0 with no uncertainty. It attempts to move 
forward at 1 m/s while rotating at 0.1 radian/s for 10 seconds. This command is 
executed in an open-loop fashion, that is, it does not change its control based on 
sensor feedback. It has some banana-shaped noise in its motion update (pick any 
reasonable distribution). 
Every second it receives a GPS sensor observation; that is, it gets told its x; y position 
(but not its orientation θ) corrupted by normally-distributed independent noise of 
standard deviation 2 meters. You may linearize the problem according to any of the 
methods we discussed in class, such as the extended Kalman filter or the unscented 
Kalman filter. 
Turn in (1) a mathematical description of your algorithm along with its derivation (no 
need to derive Kalman filters, but you might want to state them so we understand 
which version you used), (2) a code listing, and (3) an actual graph of the robot’s 
mean position and uncertainty vs. time during some sample runs obtained with your 
implemented code. This graph should show uncertainty ellipses for the robot in 1-
second intervals. 
At the end of the 10 seconds, has the robot found out any information about its 
orientation at time t = 3s? 
Why or why not? 
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Question 3: Beyond Probabilities? - 25% 

The key idea of probabilistic robotics is to maintain probability distributions over 
unknown quantities such as robot poses and maps. Can you imagine situations where 
a probability distribution might be insufficient to accurately characterize the state of 
knowledge? If yes, describe one. If not, argue why no such situation might exist. 

 

Question 4: EM for Mapping Forests – 25% 

In class, we talked about how to use the expectation maximization (EM) algorithm 
for generating 3D maps from range measurements taken at known poses. In this 
question, you are asked to derive a similar algorithm, but with two differences: 

1. All sensor measurements are in a single plane, i.e., we are back to a two-
dimensional mapping problem. Since the robot poses are assumed to be 
known, it may be convenient to think of as a location in - space. 

2. All objects in the world are trees with known radius. Since this is a two-
dimensional problem, each tree will show up as a circle of radius in the final 
map. 

3. For simplicity, let us assume that the number of trees is known a priori, and 
that the measurement noise is Gaussian. In particular, there is no need to 
consider other sources of noise or objects other than trees. 

Your questions: 
 

1. Provide (and derive) the generative model. 

2. What is the expected log likelihood that is being maximized in EM? Please 
provide a derivation. 

3. Derive all necessary equations for the E-step. 

4. Lay out your solution for the M-step. If you can’t find a closed form solution, 
you might provide an algorithm for improving the map (this is known as 
Generalized EM). 

Suggestion: You might want to use or Tom Mitchell’s book Machine Learning 
(McGraw Hill 1997. Simply follow the outline of the math provided there and modify 
it to accommodate circular objects with radius.  
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Course BSCH 
Stage / Year 4 
Module AI & Robotics  
Semester 2 
Assignment Project with partner 
Date of Title Issue Start of Week 6  
Assignment Deadline End of Week 12 
Assignment Submission Upload to Moodle 
Assignment Weighting 60% of module 

 
Submission Requirements: 

• You are both required to submit a single identical archive (zip) file to Moodle 
that has a filename of 
<lastname1>_<firstname1>_<studentnumber1>_<lastname2>_<firstname2
>_<studentnumber2>_project.zip If the files are not identical (MD5 hash 
etc.)  then you will be called to interview. 

• It should contain the following 
o Source code 
o Documentation 
o Screen shots / video of the working implementation   

 
Section 1 - Robot Operating System – 10 % 
The Objective of this section is for you to become familiar with the Robot Operating 
System(ROS) software, which you will be using in future parts to program various 
algorithms for robots. 
Before you can start this section you have to complete the following steps 

1. Make sure you installed ROS and configured your workspace according to 
the installation instructions. 

2. Follow all the beginner level tutorials from step 2 onward, to get yourself 
familiar with the ROS system. 

In this section we will work with a simulated robot equipped with a laser range 
finder which scans it environment in a horizontal plane for obstacles. In addition to 
the standard ROS core packages you will use the 2D robot simulator 
called Stage. Stage simulates a population of mobile robots, sensors and objects in 
a two-dimensional bitmapped environment. Stage provides fairly simple, 
computationally cheap models of lots of devices rather than attempting to emulate 
any device with great fidelity. 
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We are going to create a random walk algorithm for a robot to drive through the 
lab without driving into obstacles. 

The end effect of this section should be that the robot moves forward until it reaches 
an obstacle, than it rotates in place for a random amount of time and then moves 
forward again, etc. 

We start with creating a simple ROS node called random_walk. 

cd ~/catkin_ws/src 

catkin_create_pkg random_walk roscpp geometry_msgs sensor_msgs 

cd random_walk 

Create a directory called /world and unpack these world files in there. The files are 
the actual map which is used in stage, visualization of the robot and the physical 
robot and world description. 
In a new terminal start the ROS core 

roscore 

Start Stage in the previous terminal (make sure you are located 
in /random_walk folder) 

rosrun stage_ros stageros world/lab_single_turtle.world 

In the view menu of Stage you can enable the ‘Data’ option to see the sensor data 
of the robot. You can move your robot by clicking in stage and dragging it to 
another position. 
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Now, to be able to use some of the robot functionality go ahead and 
download teleoperation package for a simulated Turtlebot. Note that compilation of 
the teleoperation package requires joy package to be installed, this can be done 
through a standard package manager. In case you have any problems with the 
downloaded package, check the official “Turtlebot” project on Git and download the 
package from there. Unzip it in the ~/catkin/src folder. Finally build the source code 
by typing: 

cd ~/catkin_ws 

catkin_make 

With the package in place start teleoperation in a new terminal. 

rosrun turtlebot_teleop turtlebot_teleop_key ~cmd_vel:=/cmd_vel 

In case you receive a “not executable” message from the rosrun, make sure to add 
executable mode to the suggested file. 
If you select the teleoperation terminal, you can use your keyboard to give your 
robot commands to drive it around. 

To control the robot with our newly created node we prepared some example code. 
Download the example-code file and copy it to the /src directory of 
your random_walk package. 
You need to add your source code to the make list of the compiler. To do so open 
your CMakeLists.txt file and make sure that under “Declare a c++ executable” you 
have a link to your source code: 

add_executable(random_walk src/random_walk.cpp) 

and that you link against catkin libraries: 

target_link_libraries(random_walk 

  ${catkin_LIBRARIES} 

) 

Build the code as mentioned above with catkin_make and run the code in another 
terminal 

rosrun random_walk random_walk 

You should start seeing range values being printed in the terminal, along with some 
timestamps. If you now move the robot with the keyboard or mouse, you will notice 
that the range value’s change according to the presence of obstacles. 

Your task is now to take the example code and adapt it in the given places to 
implement a simple random walk algorithm as described above. You are free to 
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extend the random walk algorithm to a more sophisticated one to achieve higher 
marks. 
Automated Startup method 

You can also automate the startup of the needed nodes by using a launch file, when 
using a launch file you don’t need to start the roscore, this will be automatically 
done, furthermore the nodes that you specified will be started. To make a launch 
file, you create a file named random_walk.launch in your random_walk package 
and paste the next code in it. 

<launch> 

  <node name="stageros" pkg="stage_ros" type="stageros" args="$(find 
random_walk)/world/lab_single_turtle.world" respawn="false" output="screen" 
/> 

  <node name="random_walk" pkg="random_walk" type="random_walk" 
output="screen" /> 

</launch> 

Start your program now with 

roslaunch random_walk random_walk.launch 

 

Section 2 – Driving a Robot - 20% 
In this section the robot drives through a corridor with several doors in it and has 
to localize itself. To achieve this, you are going to implement a Bayes filter. 

 
The robot can be controlled by an interface, called “controller” which has several 
buttons to perform some required actions. 
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The robot world is discretized in grid cells of 1m x 1m. There are 10 of these grid 
cells in this world. The robot moves forward by 1m by pressing the “Move” button, 
and turns 180 degrees by pressing the “Turn” button. This means the robot can 
move in both directions through the corridor and every grid-cell is represented by 
two belief-states (one facing left, one facing right). State 0 is at the upper right 
corner, then increasing to state 9 at the upper left, state 10 is at the lower left and 
increasing to state 19 in the lower right. So states 0..9 represent the beliefs for the 
robot facing left, and 10..19 represent the beliefs for the robot facing to the right. 
The measurements of the robots are also discretized to detect walls at a maximum 
distance of 1m (done by the laser_to_wall node). This means that at every position 
(state) the robot gets three possible measurements 
(e.g. wall_right, wall_left, wall_front). 
 

 
 

To visualize the robot position and the belief of the robot for every possible state 
we visualize everything in RViz. You see the robot and see an overlay of the states 
onto the map. Next to the state number the belief probability is printed and the 
higher the probability, the less opaque the red marker gets. 

Localization without uncertainty wouldn’t be much fun, so you can enable/disable 
both movement and measurement noise with the controller buttons, by default 
noise is disabled. (When you pressed the button, you can check the noise state in 
the terminal.)  The following measurement and movement models are used: 
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In the example code the general framework for running this simulation is provided, 
you have to fill in the gaps! 

§ Implement the measurement model in updateSensing() 
§ Implement the motion model in updateMove() and updateTurn() 

Hints: 

§ Create an internal representation of the world to compare your 
measurements against. 

§ The three different sensor measurements can be treated with separate 
probabilities. 

§ View the tutorials on Bayes filters. 
Practical tip: 

– For those of you who would like to solve move/turn overshoot problem 
(particularly relevant if you run ROS on a VM), you might have to modify “Move” 
and “Turn” actions of the simulated robot so that it takes into account its own 
odometry. You might have to look into quaternion coordinate representation and 
see how you can grab current robot position/orientation at the time of movement. 
Installation: 
Download and unzip these packages into your ~/catkin/src workspace directory. 
Go inside a terminal to the /nodes directory of 
the controller and laser_to_wall packages and make the python files in these 
packages executable, otherwise you can’t run them. 

chmod +x filename.py 

Create a new package called “bayes_fiter” with dependency’s of “roscpp”, 
“laser_to_wall”, “controller”, and “geometry_msgs”. (see Section 1, how to create 
a package) 
Copy the example-code file (bayes_filter.cpp) into the /src directory of this 
package. 
Add this source-file to the CMakeLists.txt (see Section 1, how to do this). Build your 
catkin workspace. 
 
Inside the “bayes_world” directory we have created a launch file 
“bayes_world.launch”, it starts the environment you need for this (see Section 
1 how to run the launch file). It starts: 

1. joint_state_publisher, needed for visualization purposes. It publishes 
messages about the robot’s joint states. 

2. robot_state_publisher, needed for visualization purposes. It publishes 
messages about the robot’s body state. 

3. Stage, with the required robot model and map. 
4. fake_localization, needed for simulation purposes. Note: this package might 

have to be installed through the package manager. 
5. map_server, that publishes the map so it can be used in RViz. Note: this 

package might have to be installed through the package manager. 
6. laser_to_wall, which is a custom node that translates from laser data 

to wall_front, wall_left, wall_right detection, with a maximum distance of 1 
meter. 

7. controller, this custom nodes provides control buttons for moving the robot 
around, turning, measurements and enabling/disabling noise. Note: this 
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package might require installation of the wxPython through the package 
manager. 

8. RViz, in which we visualize the robot position and more important, the belief 
states of the robot, the view, sensors and map settings you see in is loaded 
from the view.vgz configuration file. 

Run your bayes_filter node (see Section 1), and then you can move your robot 
around with the controller. 
Make any optimizations you see fit. 
 

	

Section 3 - Particle Filter - 20%  
This section consists of implementing a particle filter for Monte Carlo localization, 
using ROS (Robot Operating System). 

There already is a package in ROS for doing Monte Carlo localization: 
the amcl package. This section is intended as a replacement for AMCL. 
Your task is to implement a class that inherits from the MCLocalizer interface and 
implements the missing methods. Specifically, you should implement a sensor 
model and a motion model, as well as the particle filter update rules. Skeleton code 
for running a simulator with a map and a robot, and publishing information from 
the particle filter, is available. 
 

 
Installation: 
In addition to the packages installed with the full desktop install, you also have to 
install occupancy_grid_utils. These are useful tools for dealing with grid maps, and 
are required for compiling the MyLocalizer class. 
Install these packages (occupancy_grid_utils, particle_world, particle_filter) we 
created for you. Just unzip them in your ~/catkin/srcworkspace directory. 

1. Install an additional ROS package required to compile occupancy_grid_utils. 
Just type in a terminal: 
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sudo apt-get install ros-{your version of ROS}-tf2-bullet 

2. Compile your catkin workspace. (if in doubt, see Section 1 how to do this) 
3. There are two launch files available, which make it more convenient for you 

to run all components of ROS that are needed for the exercise. The launch 
files are called particlefilter_lab.launch and particlefilter_willow.launch are 
located in the particle_world package. The Lab map is a small and simple 
map; the Willow map is a much larger and more complex map. Launching 
these should open up two windows – Stage and RViz – both displaying the 
robot and a map. 

4. In the Stage window, you can drag the display with the mouse, so that you 
can see the simulated robot. You can also enable display of the simulated 
laser range finder, under the menu “View / Data”. 

5. In the RViz window,  make sure that the fixed frame is set to /map.The 
RViz configuration file is also located in the particle_world package. 

6. You can move the robot around with the turtlebot_teleop node or you can 
try to use your random walk algorithm you implemented in Section 1. 

7. Run the provided MCL node (particle_filter). It does not do much yet, but it 
should show a set of particles as red arrows in the RViz window. The 
particles should move around as the robot moves. 

8. Make any optimizations you see fit. 
 

  

The section 
The class MyLocalizer, located in ParticleFilter.hpp, and ParticleFilter.cpp has 
more-or-less empty methods for implementing a sensor model, a motion model, 
and a particle-filter update (weighting and resampling) routine. 
Your task is to complete the predefined methods in ParticleFilter.cpp needed for 
localization. 
More instructions and explanations are supplied in the source files. 
Hints: 

§ Start with the Lab map, later try if you can localize yourself in the Willow 
map (you might need more particles). 

§ Use Gaussians for movement and measurement noise, you should figure 
out some sensible parameters for your noise. 

§ You can set your initiation location in RViz with the 2D Pose Estimate 
command. 

§ Raycasting is done for you (simulatedScan). 
§ Use a limited amount of rays (~30). 
§ Resampling -> resampling wheel. 

 

	

Section 4 – 2D Navigation System -  20%  
In this section you are going to build a 2D navigation system for a simulated robot 
using ROS (Robot Operating System). 

Naturally navigation task is crucial for robot operation and ROS has a full scale 
navigation stack operated by move_base package. This section aims at replacing 
the existed stack with a more basic version. 
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You are provided with the known environment, configurations and a base code for 
the Navigation class you are going to contribute to. 
 

 
Installation: 
Install these packages (navigation_world and navigation) we created for you, you 
should just unzip them in your ~/catkin/srcworkspace directory. After that: 

1. Compile your catkin workspace. (see Section 1, how to do this) 
2. There are two launch files available, which make it more convenient for you 

to run all components of ROS that are needed for the exercise. The launch 
files are called lab.launch and willow.launch are located in 
the navigation_world package. The Lab map is a simple map, the Willow 
map is a more complex map. Launching this should open up two windows 
displaying the robot and a map. 

3. In order to try-out different starting positions you can use 
the turtlebot_teleop node (see Section 1 for reference). 

4. Run the navigation node, which should just cleanly start and output you 
some info about the world it fetched. 

5. Target point can be input to the navigation node in two ways, by: 
§ adding command line arguments, i.e. 

rosrun navigation navigation tgtX tgtY 

, where tgtX and tgtY are your values; 

§ using the “Publish Point” utility in RViz (just place the point anywhere on 
the map and your path-planning routine will get invoked). 

The section 
Navigation class, declared in navigation.hpp and specified in navigation.hpp, has 
more-or-less empty methods for path-finding and path visualization. The code 
provided gathers the all the required information about the world for you. 
The source files contain the instructions and explanations needed to complete the 
section. 
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Requirements: 
§ Prepare the received knowledge about the world in a way to be later used 

by your path-planning algorithm. 
§ Perform path-planning, allowing the robot to plan its travels from any point 

A to any point B on the map. 
§ Get the path visualized in RViz. 
§ Make sure that the suggested plan correctly (dis-)allows the bot to travel 

through the narrow spots and go around the corners. 
§ Add functionality allowing the bot to actually travel from point A to point B, 

by following the path suggested. Ensure that the path execution is done 
without significant drift-off. 

§ (For higher marks) Try to optimize the path-planning algorithm 
computation time, suggested path length, and # of robot heading changes 
— in order to efficiently deal with the resources. 

§ (For higher marks) Extend the path-planning in such a way that a shortest 
path is found for an unordered set of N-path-points. Let the robot follow 
this more complex path. 
 

Section 5 – Documentation – 30%  
 
In this section you are asked to document the work you have done on this project 
 
For each of the sections 2,3 & 4 answer the following questions. 

1. Identify the AI algorithms used. 
2. Describe with the aid of notation and diagrams how these AI algorithms are 

used. 
3. Discuss the suitability of the simulated robot to perform the tasks  
4. Explain the theory of any optimizations that you have used and comment on 

how the robot behaviour has been influenced.  
 
Please include a section entitled “Division of Labour” containing the details below.  
 
The section below must be cut and paste to the top of your documentation section.  
 
Student Name1:      Student Number1:  
Student Name2:      Student Number2:  
 
Please complete the sections below with regard to the estimate of the division of work 
between the two partners 
If the work was split in the range of 45% to 55% per partner, then that is fine and 
simply say “Work was evenly divided”. If this was not the case, then state with a 
summary sentence. This is the important statement of this file. 
Division of work:  work was evenly divided 
_____________________________________________________________________ 
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Code repository log (if applicable) 
Paste here 
 
Percentage of work completed by each partner on each class / task  
Some areas require more work than others, so this is only for reference. An average 
of these values will not be calculated. 
 

Filename / Task Student Name 
1 

Notes Student Name 
2  

Notes 

Task1  40%  60%  
Task2 60%  40%  
Task3 Etc.    
Task5     
Task6      

  


