
67

Module 19 Concurrent Development

Module title Concurrent Development

Module NFQ level (only if an NFQ level can be
demonstrated)

7

Module number/reference BSCH-CD

Parent programme(s)
Bachelor of Science (Honours) in
Computing Science

Stage of parent programme Award stage

Semester (semester1/semester2 if applicable) Semester 1

Module credit units (FET/HET/ECTS) ECTS

Module credit number of units 10

List the teaching and learning modes Direct, Blended

Entry requirements (statement of knowledge, skill and
competence)

Learners must have achieved
programme entry requirements.

Pre-requisite module titles
BSCH-CP, BSCH-OOP, BSCH-SD1,
BSCH-SD2

Co-requisite module titles None

Is this a capstone module? (Yes or No) No

Specification of the qualifications (academic, pedagogical
and professional/occupational) and experience required
of staff (staff includes workplace personnel who are
responsible for learners such as apprentices, trainees and
learners in clinical placements)

Qualified to as least a Bachelor of
Science (Honours) level in Computer

Science or equivalent and with a
Certificate in Training and Education

(30 ECTS at level 9 on the NFQ) or
equivalent.

Maximum number of learners per centre (or instance of
the module)

60

Duration of the module
One Academic Semester, 12 weeks

teaching

Average (over the duration of the module) of the contact
hours per week

5

Module-specific physical resources and support required
per centre (or instance of the module)

One class room with capacity for 60

learners along with one computer lab
with capacity for 25 learners for each

group of 25 learners

68

Analysis of required learning effort

Minimum ratio

teacher / learner
Hours

Effort while in contact with staff

 Classroom and demonstrations 1:60 24

 Monitoring and small-group teaching 1:25 36

 Other (specify)

Independent Learning

 Directed e-learning

 Independent Learning 90

 Other hours (worksheets and assignments) 100

 Work-based learning – learning effort

Total Effort 250

Allocation of marks (within the module)

Continuous
assessment

Supervised
project

Proctored practical
examination

Proctored written
examination

Total

Percentage
contribution

60% 40% 100%

Module aims and objectives
This module builds on the work completed in programming modules completed in

stages 1 and 2 and will apply the methods learned there to the study of Concurrent

Development. Concurrency complicates the field of programming because processes

are non-deterministic and to write concurrent systems that are correct we must

understand how to manage limited shared resources. Learners gain an understanding

of the need for, and advantages of, concurrent and parallel systems; a mastery of a

new programming paradigm that is different from that of the single threaded one; a

description of how processes and threads are managed in multi processor, multi core

machines; an understanding and mastery of the many classical problems arising with

concurrent and parallel tasks; an awareness of the need for such issues as fairness,

process synchronisation, deadlock avoidance, etc; and an ability to write concurrent

and parallel programs to solve real world problems.

Minimum intended module learning outcomes
On successful completion of this module, the learner will be able to:

1. Discuss the advantages of concurrent programming over single threaded
sequential programming

2. Use threading to distribute the workload of a single task and optimise
performance of algorithms

3. Explain the necessity for synchronisation when sharing resources and solve
problems that require synchronisation

4. Explain race conditions, deadlocks and strategies for deadlock avoidance

69

5. Use condition variables to solve limited resource sharing problems

6. Describe the role of semaphores and events in concurrent systems and solve
problems requiring both semaphores and events as part of the solution

7. Describe the difference between the shared memory model for threads and
the distributed memory model for processes

8. Describe the client server architecture and use it to solve communication
between distributed processes

9. Explain the semantics of streams and show how they can be harnessed to
deliver multi-threaded parallel services

Rationale for inclusion of the module in the programme and its contribution to the
overall MIPLOs
This module takes an object-oriented approach to the study of concurrent

development and provides learners with the experience of applying this methodology

to a complex field of programming. The module provides learners with the tools

necessary to build concurrent models that optimise the performance of solutions to

computational problems by harnessing the full power of the underlying hardware

architecture. It provides a detailed study of the classical issues surrounding the

control of non-deterministic processes. Appendix 1 of the programme document

maps MIPLOs to the modules through which they are delivered.

Information provided to learners about the module
Learners receive a programme handbook to include module descriptor, module

learning outcomes (MIMLO), class plan, assignment briefs, assessment strategy and

reading materials.

Module content, organisation and structure
Fundamentals

• Motivation for concurrency; simple examples; determinism versus non-
determinism – advantages and disadvantages

• Process versus threads; priority of processes; process creation and destruction
(Fork in Unix, Task in Ada, thread in java); processes sharing memory; dynamic
process creation; facilities for concurrency provided by programming
languages and operating systems; C#, Windows, Linux and Unix; Java virtual
machine; writing threads in Java

Divide & Conquer algorithms

• Distributing workload by dividing linear spaces; using threadpools to optimise

performance; using divide and conquer algorithms such as ForkJoinPool in

Java.

70

Resource sharing
• Mutual exclusion; intrinsic locking; coarse grained versus fine-grained locking;

deadlocks and deadlock avoidance; starvation; condition variables and sharing

limited resources; semaphores; Classic problems: dining philosophers;

readers/writers, producer/consumer, bounded buffer; resource allocation;

synchronisation; controlling threads with thread queues. Solving problems

with Semaphores and event barriers.

Communicating processes (processes without shared memory)

• Distributed memory model; Pipes; channels; message passing; remote
procedure call. Distributed Topologies.

• Server design and the implementation of client server architecture over
sockets. Deploying services on a client server architecture. Supporting
distributed processing using server model.

Functional Programming and Concurrent Streams

• Streams and the delivery of parallel services to application programs.

• Message passing systems based on Actors (Scala, F# and Erlang) Avoiding race

conditions with the use of immutable state.

• Communication protocols for actors. Programming with Actors

Module teaching and learning (including formative assessment) strategy
The module is delivered through a combination of lectures and practical lab

programming sessions. The learners complete a series of worksheets throughout the

module that are directly related to the material covered in lectures. The emphasis is

on developing sound software engineering skills in practical programming based on

theoretical knowledge.

Assessment consists of a series of continuous assignments and a final examination.

Each week learners are required to complete a series of programming tasks that relate

to the material covered in lectures. The practical lab sessions are used to enforce

concepts covered in the lectures and the worksheets are used to ensure that learners

are keeping up with the material as it is delivered. Lab sessions are also used to deal

with issues emerging from the worksheets. All work submitted by learners is assessed

and comments are given to individual learners.

Timetabling, learner effort and credit
The module is timetabled as one 2-hour lecture and two 1.5-hour labs per week.

Continuous assessment spreads the learner effort to focus on the aspects of the

course under discussion.

71

There are 60 contact hours made up of 12 lectures delivered over 12 weeks with

classes taking place in a classroom. There are also 24 lab sessions delivered over 12

weeks taking place in a fully equipped computer lab. The learner will need 100 hours

of independent effort to further develop the skills and knowledge gained through the

contact hours. An additional 90 hours are set aside for learners to work on worksheets

and assignments that must be completed for the module.

The team believes that 250 hours of learner effort are required by learners to achieve

the MIMLOs and justify the award of 10 ECTS credits at this stage of the programme.

Work-based learning and practice-placement
There is no work based learning or practice placement involved in the module.

E-learning
The college VLE is used to disseminate notes, advice, and online resources to support

the learners. The learners are also given access to Lynda.com as a resource for

reference.

Module physical resource requirements
Requirements are for a classroom for 60 learners equipped with a projector, and a 25-

seater computer lab for practical sessions with access to Java and a suitable

development environment (for example Notepad++) (this may change should better

techonologies arise).

Reading lists and other information resources
Recommended Text
Benmammar, B. (2017) Concurrent, Real-Time and Distributed Programming in Java.

Newark: John Wiley & Sons, Incorporated.

Goetz, B. (2006) Java Concurrency in Practice. Upper Saddle River: Addison-Wesley.

Secondary Reading
Lea, D. (2002) Concurrent Programming in Java: Design Principles and Patterns.

Reading: Addison-Wesley.

Burns, A. and Wellings, A. J. (2007) Concurrent and Real-time Programming in Ada.

Cambridge: Cambridge University Press.

Magee, J. and Kramer, J. (2006) Concurrency: State Models & Java Programs.

Chichester: John Wiley & Sons

Odersky, M., Spoon, L. and Venners, B. (2016) Programming in Scala. Walnut Creek:

Artima Press.

72

Lectures on Programming Paradigms with Scala, Tony Mullins (2012), Griffith College

Dublin.

Specifications for module staffing requirements
For each instance of the module, one lecturer qualified to at least Bachelor of Science

(Honours) in Computer Science or equivalent, and with a Certificate in Training and

Education (30 ECTS at level 9 on the NFQ) or equivalent.. Industry experience would

be a benefit but is not a requirement.

Learners also benefit from the support of the programme director, programme

administrator, learner representative and the Student Union and Counselling Service.

Module Assessment Strategy
The assignments constitute the overall grade achieved, and are based on each

individual learner’s work. The continuous assessments provide for ongoing feedback

to the learner and relates to the module curriculum.

No. Description MIMLOs Weighting

1

Series of weighted worksheets

Worksheet 1: Learning outcomes 2

Worksheet 2: Learning outcomes 2

Worksheet 3: Learning outcomes 2,3,4,5

Worksheet 4: Learning outcomes 3,6

Worksheet 5: Learning outcomes 2,3,4,6,8

Worksheet 6: Learning outcomes 2,3,4,9

1-9 60%

2
Written exam that tests the theoretical

aspects of the module
1-9 40%

All repeat work is capped at 40%.

Sample assessment materials

Note: All assignment briefs are subject to change in order to maintain current content.

73

Assignment 1

Please complete the problems listed below. This assignment forms part of the

assessment for this module and you are required to upload your solution in the

template file available on Moodle. This file should be used to write your solution and

should be uploaded to Moodle on or before midnight on Sunday next. You must

include as header your name and student number.

Question 1
Write a program that uses 4 threads that each toss a die a given number of times. In

both cases the result of each toss is stored in a shared array. The array is deemed to

be large enough to store the result of each throw and each thread should only write

to its own array segment. Once the threads have completed their work then the main

program counts the frequency of each throw and prints it on the screen.

Question 2
Given below is a single threaded program that computes the index of the leftmost
zero in a huge array. Your task is to write a parallel solution that distributes the

workload fairly over 4 threads. It is important to try to write an optimal solution. Note:

it is not required to optimize the initializtion phase by using threads.

public class FindLeftmostZero {
 static final int N = 10000000;
 public static void main(String[] args) {
 int data[] = new int[N];
 //assume occurrence of zero equally likely for all numbers generated
 for(int j = 0; j < N; j++)
 data[j] = (int)(Math.random()*N);
 int index = 0;
 while(index < data.length && data[index] != 0) index++;
 if(index == data.length)
 System.out.println("No zero");
 else
 System.out.println(index);
 }
}

74

Assignment 2

Please complete the problems listed below. This assignment forms part of the

assessment for this module and you are required to upload your solution in the

template file available on Moodle. This file should be used to write your solution and

should be uploaded to Moodle on or before midnight on Sunday next. You must

include as header your name and student number.

Question 1
MergeSort continuously divides the data into segments until segments of size 1 are

reached. It then begins the merging phase. This is the expensive part. Improvements

could be made if we could reduce the cost of merging. It turns out that InsertionSort
is very efficient for small data sequences (say sequences of 100 values) where the data

is partially ordered in the correct order and the displacement is small.

The idea is to combine MergeSort and InsertionSort to reduce the over head of

merging. To do this we terminate the MergeSort division when segments of some

given size are reached, use InsertionSort to sort the segments and then do the merging

as before.

Your task is to implement this solution using the ForkJoin framework. You should

test it with integer 10000000 integer array.

static void mergeSort(int f[], int lb, int ub){
 //termination reached when a segment of size 1 reached - lb+1 = ub
 if(lb+1 < ub){
 int mid = (lb+ub)/2;
 mergeSort(f,lb,mid);
 mergeSort(f,mid,ub);
 merge(f,lb,mid,ub);
 }
}
static void merge(int f[], int p, int q, int r){
 //p<=q<=r
 int i = p; int j = q;
 //use temp array to store merged sub-sequence
 int temp[] = new int[r-p]; int t = 0;
 while(i < q && j < r){
 if(f[i] <= f[j]){

75

 temp[t]=f[i];i++;t++;
 }
 else{
 temp[t] = f[j]; j++; t++;
 }
 }
 //tag on remaining sequence
 while(i < q){ temp[t]=f[i];i++;t++;}
 while(j < r){ temp[t] = f[j]; j++; t++;}
 //copy temp back to f
 i = p; t = 0;
 while(t < temp.length){ f[i] = temp[t]; i++; t++;}
 }
}

Question 2
Given below is a class Point that is thread safe. Your task is to write a class, called

CollectionPoint, that manages a collection of Point instances. This class owns the

points under its control and must synchronize concurrent activity. Hence, the class

must be thread safe. The class CollectionPoint should use an ArrayList to store

points and must provide the following interface methods: add, that adds a new point

to the collection; search, that searches for a point in the class and returns true or

false; getAllX(int x) that returns a list of all points whose x-ordinate matches x;

toString, that the list of points as a String. It should also be possible to replace an

existing point with a new one.

The class Point listed below is immutable and, hence, does not require

synchronization.

final class Point{
 private final double x, y;
 public Point(double x0, double y0){x = x0; y = y0;}
 public double x(){return x;}
 public double y(){return y;}
 public String toString(){return "("+x+","+y+")";}
}

76

Assignment 3

Please complete the problems listed below. This assignment forms part of the

assessment for this module and you are required to upload your solution on Moodle.

You must include as header your name and student number.

Question 1

A platform has space for at most 100 people at any one time. People are only admitted

when the platform is open and the number of persons does not exceed the prescribed

limit. Using condition variables write a class that could be used to control access to

the platform. By creating multiple threads to represent people accessing the platform

write a simulator for your control.

Question 2
A thread pipeline is a sequence of threads linked together with a chain of buffers. Each

thread in the pipeline reads from the buffer preceding it in the chain and may write to

the buffer following it in the chain. The diagram described in your lecture illustrated a

pipeline of threads with connecting buffers. There is a single thread (main) that is the

source of data in the pipe and it writes to the first buffer in the chain. The Buffer

class, listed below, is used to provide nodes in the chain.

Your task is to construct a pipeline that will sort a list of integer values. The pipe will

consist of 10 threads only. Each thread will sort its own list of values. The source will

generate 1000000 random integer values guaranteed to be in the range 0..99999.

Each thread in the pipe will handle values in a given range: thread0 values of x such

that 0 <= x < 10000, thread1 values of x such that 10000 <= x < 20000, etc. All we know

is that the data is random in a given range and, consequently, we don’t know how

many values a given thread may have to deal with. A suggestion is to use an ArrayList

to store values for the individual threads. This has the added advantage that you can

use the Collection.sort algorithm to do the sort for you. When the sort is complete

each thread should copy its data to a global shared array that is sorted.

77

Assignment 4

Please complete the problems listed below. This assignment forms part of the

assessment for this module and you are required to upload your solution on Moodle.

You must include as header your name and student number.

This is an assignment based on the Semaphore class discussed in the lecture and you
may only use it to answer these questions.

Question 1
Given N threads ensure that they execute in order 0..N-1. Each thread should print a
message listing its number in the sequence when it gets to execute. The values must be
in order.

Question 2
A class that forces all threads to wait for an event is required. This class is to have two

methods: waitEvent() that forces threads to wait and releaseAll() that releases all

waiting threads. The class should be called WaitEventBarrier. It takes no

arguments.

Write a simple test in main that creates a WaitEventBarrier and a number of

threads that are forced to wait until released by main.

Question 3
A LatchBarrier is a control that forces N threads to rendezvous at a given point.

When all threads reach the barrier then they are all released. The threads are

automatically released by the barrier when the Nth thread invokes the public method

wait on the barrier. This LatchBarrier has no reset method and, hence, once it

releases threads it no longer works as a barrier. Note the class only has a constructor

that takes N as argument and a wait method.

Note: this class differs from the one in Question 2 because it has no release method

but it does know the number of threads that will rendezvous.

78

Assignment 5

Please complete the problem described below. This assignment forms part of the

assessment for this module and you are required to upload your solution on Moodle.

You must include as header your name and student number.

A message server uploads and stores messages to be displayed on motorway notice

boards. Write clients input messages and send them to the server. Each message

consists of the text to be displayed and a list of the distributed notice boards that must

display it. The server has a single write thread that automatically distributes messages

to the appropriate designated display sites. Each site manages its own display and acts

as a server listening for messages from the central server.

In reality each of the distributed sites would have separate IP addresses for the

machines managing the local displays. But in this exercise we model the entire system

in terms of a local host. Sites are identified by their port numbers. Each site has a name

and a port number. The server only needs the unique port number to send a message

to a site. The diagram below describes the entire system. The server listens for

messages on port 2000 and the write thread writes to one or more sites using the

required port numbers. The diagram just lists Athlone on port 3000, Limerick on port

4000 and Cork on port 5000. Other ports can also be added if you wish but the

minimum 3 must be supported by your system.

Your task is to build a working model of this system.

Messages

T1..Tn

S1

Writers

Message Server

2000

3000

Athlone
Display

4000

Limerick
Display

5000

Cork
Display

Other Displays

Writer Thread

79

Assignment 6

Please complete the problems described below. This assignment forms part of the

assessment for this module and you are required to upload your solution on Moodle.

You must include as header your name and student number. Please copy your final
solutions for each question to the relevant section in the file Assignment6.java on
Moodle.

Question 1 (6 marks)

Use the class MyArrayList to implement the interface MyList listed below using
parallel streams and write a test program to test the methods. The class should be thread
safe.

interface MyList<E>{
 public void add(E x);
 public void add(List<E> lst);
 public boolean forAll(Predicate<E> pr);
 public boolean exists(Predicate<E> pr);
 public long count(Predicate<E> pr);
 public List<E> map(Function<E,E> fn);
 public List<E> filter(Predicate<E> pr);
 public List<E> mapFilter(Function<E,E> fn, Predicate<E> pr);
}

class MyArrayList<E> implements MyList<E>{
 private ArrayList<E> data = new ArrayList<>();
 …
}

Question 2 (4 marks)
Given on Moodle is a program called HappyNumsParallel.java that computes the

frequency of happy numbers in first 1000000 integer values. A class called HappySad

is given. Your task is to write a separate program that solves this problem using parallel

streams. I have put a partial solution on Moodle – it is called

HappyNumsParallelStreams.java. It contains the Predicate happy that can be used

80

as part of the stream. It is important that you comment on the performances of the

two programs when you have finished your work.

81

GRIFFITH	COLLEGE	DUBLIN	
	
	
	
	

QUALITY	AND	QUALIFICATIONS	IRELAND	

EXAMINATION	

	
	
	
	
	

CONCURRENT	PROGRAMMING	
	
	
	
	
	

Lecturer(s):	 	 	 	 	 	 	 	 	
	 	
	
External	Examiner(s):		 	 	 	 	 	
	
	
	
	
Date:	9th	January	2018		 	 	 	 	 	
	 Time:	2.15-5.15	
	
	
	
	
THIS	PAPER	CONSISTS	OF	SIX	QUESTIONS	
FIVE	QUESTIONS	TO	BE	ATTEMPTED	
ALL	QUESTIONS	CARRY	EQUAL	MARKS	
	
APPENDIX	ATTACHED	TO	THE	BACK	OF	THE	EXAMINATION	PAPER	

82

QUESTION	1	

(a) Explain	why	sharing	resources	among	multiple	 threads	or	processes	can	

give	rise	to	problems.	Give	at	least	one	example.		

Suppose	you	want	to	share	the	screen	with	multiple	threads	who	may	all	

try	to	write	to	it	at	the	same	time,	describe	how	you	would	control	access	

to	this	device.	Your	answer	should	include	a	sketch	of	the	code	used	by	a	

thread	to	control	access.	

(10	marks)	

(b) Write	a	thread	called	Mapper	that	copies	data	from	a	segment	in	a	source	

array	to	a	copy	array	squaring	the	value	of	each	element	from	the	source	

array	in	the	process.	Both	the	lower	bound	and	upper	bound	of	the	segment	

in	the	source	array	are	passed	as	arguments	to	the	thread.		

(7	marks)	

(c) In	relation	to	threads	what	is	the	purpose	of	the	join	method?	When	is	a	

thread	in	the	state	TIMED_WAITING?	

(3	marks)	

Total	(20	marks)	

QUESTION	2	

(a) Given	below	is	a	sequential	program	that	calculates	the	frequency	of	even	

values	 in	 a	 large	 array.	 Your	 task	 is	 to	 write	 a	 parallel	 solution	 that	

distributes	the	workload	over	the	number	of	processors	on	the	machine	

executing	your	program.	

	public	static	void	main(String[]	args)	{	

										int	f[]	=	new	int[1000000];	

										for(int	j	=	0;	j	<	f.length;j++)	f[j]	=	(int)(Math.random()*100000);	

										int	freq	=	0;	

										for(int	j	=	0;	j	<	f.length;	j++)	

									 		if(f[j]	%	2	==	0)	freq++;	

										System.out.println(freq);	

						}	

The	number	of	processors	is	given	by	

Runtime.getRuntime().availableProcessors())	

	(10	marks)	

(b) The	ForkJoinPool	in	Java	7	provides	a	divide	and	conquer	algorithm	that	can	

be	 used	 to	 implement	 concurrent	 solutions	 to	 problems.	 Briefly	 explain	

how	 it	 works,	 and	 use	 it	 to	 implement	 a	 solution	 to	 calculating	 the	

frequency	 of	 odd	 numbers	 in	 a	 huge	 array.	 (Appendix	 A	 to	 this	 paper	
provides	 a	 template	 for	 a	 RecursiveTask	 that	 can	 be	 used	 to	 write	 your	

solution.)	

(10	marks)	

Total	(20	marks)	

83

QUESTION	3	

(a) Explain	the	semantics	of	the	class	Lock	in	the	Java.util.concurrent	package	

and	write	down	a	code	pattern	for	using	an	object	lock	in	a	code	block.	

(5	marks)	

(b) Class	Stack<T>	below	describes	a	generic	stack,	i.e.	a	last-in-first-out	list,	

intended	for	use	in	a	concurrent	environment.	Only	methods	push	and	pop	

are	given.	Your	task	is	to	re-write	it	using	the	Lock	class	so	that	the	shared	

methods	are	safe	for	concurrent	access.	

class	Stack<T>	{	

				private	T[]	s	=	(T[])new	Object[100];		

				private	int	n	=	0;				

				public	bolean	push(T	item)	{		

								if(n	<	s.length){		

											s[n]	=	item;		n++;	

											return	true;	

							}	

							return	false;	

				}	

				public	T	pop()	{	

						if(n	>	0){	

									n--;	

									return	(T)(s[n]);	

						}	

						return	false;	

				}	

}	

	

(5	marks)	

(c) Explain	 why	 the	 use	 of	 static	 variables	 and	 instance	 variables	 in	 the	

definition	of	a	class	complicates	things	when	writing	methods	that	support	

concurrent	access	for	threads.	

(5	marks)	

(d) Given	 below	 is	 the	 class	 SharedArray.	 Explain	why	 the	method	 swap	 is	

deadlock	prone	and	re-write	it	so	that	it	is	deadlock	free.	

	

class	SharedArray	{		

					 	 private	int	ff[];	

					 	 private	Lock	keys[];									

					 	 public	SharedArray(int	n){	

					 	 	 ff	=	new	int[n];	

					 	 	 keys	=	new	ReentrantLock[n];	

					 	 	 for(int	j	=	0;	j	<	n;	j++){	

					 	 	 	 ff[j]	=	(int)(Math.random()*100);	

84

					 	 	 	 keys[j]	=	new	ReentrantLock();	
					 	 	 }	

					 	 		}	

					 	 		void	swap(int	j,	int	k)	{		

					 	 	 keys[j].lock();	keys[k].lock();		

					 	 	 int	t	=	ff[j];	ff[j]	=	ff[k];	ff[k]	=	t;	

					 	 	 keys[j].unlock();	keys[k].unlock();		

					 	 		}	

	 	 		//.....	

								}	

(5	marks)	

Total	(20	marks)	

	

QUESTION	4	

(a) Explain	the	role	of	condition	variables	when	writing	a	class	that	manages	a	

shareable	resource.		

(5	marks)	

(b) Explain	 why	 the	 await	 method	 of	 a	 condition	 variable	 must	 always	 be	

enclosed	by	a	loop	guard.	

(4	marks)	

(c) A	 server	 manages	 the	 allocation	 of	 10	 ports	 to	 clients.	 When	 a	 client	

requests	a	port	from	the	server	it	receives	a	port	number,	if	one	is	available.	

In	the	event	that	no	port	is	available	the	client	waits	indefinitely	for	one	to	

become	 free.	 Once	 a	 port	 is	 allocated	 no	 other	 client	 can	 use	 it.	 	 Using	

condition	variables,	implement	the	server	class.	
(11	marks)	

Total	(20	marks)	

	
QUESTION	5	

(a) Explain	the	semantics	of	the	Semaphore	class.	

(4	marks)	

(b) The	 generic	 class	MyQueue,	 listed	 below,	manages	 a	 fixed	 size	 queue	 of	

elements.	This	class	has	only	two	methods:	join	that	appends	new	elements	

to	the	queue	and	get	that	removes	and	retrieves	the	element	at	the	head	of	

the	queue.	Your	task	is	to	re-write	this	class	so	that	it	can	be	shared	among	

multiple	 threads.	 The	 semantics	 of	 the	 new	 class	 are	 that	 it	 should	 be	

thread	 safe	and	use	Semaphores	to	 control	 threads	using	 its	methods.	A	

thread	using	the	join	method	should	wait	if	the	queue	is	full	and	a	thread	

using	the	get	method	should	wait	in	the	event	that	the	queue	is	empty.		

class	MyQueue<T>{	

		private	LinkedList<T>	queue	=	new	LinkedList<T>();	

85

		private	int	maxSize;	

		public	MyQueue(int	m){maxSize	=	m;}		

		public	void	join(T	x){	

						if(queue.size()	<	maxSize)	queue.add(x);	

		}	

		public	T	get(){	

				if(queue.size()	>	0)	return	queue.removeFirst();	

				return	null;			

		}	

}	

(10	marks)	

(c) The	following	class	will	deadlock	by	invoking	method	t().	Why?	

class	A{	

	 private	Semaphore	sem;	

	 public	A(){sem	=	new	Semaphore(0);}	

	 synchronized	void	t(){	

	 	 ...	

	 	 try{sem.acquire();	

	 	 }catch(InterruptedException	e){}	

	 }	

	 synchronized	void	t1(){	

	 	 ...	

	 	 sem.release();	

	 }	

}	 	 	 	 	

(3	marks)	
(d) Explain	how	an	instance	of	a	CountDownLatch	can	be	used	to	force	N	threads	

to	wait	for	a	signal	to	begin	working.	

(3	marks)	
Total	(20	marks)	

QUESTION	6	

(a) Explain	 how	 functions	 and	 streams	 in	 Java	 8	 facilitate	 programmers	 in	

stating	what	they	want	delivered	rather	how	it	is	to	be	delivered.		
(4	marks)	

(b) One	of	the	prime	motivations	for	introducing	functions	and	streams	in	the	

Java	programming	language	was	to	provide	support	for	parallel	processing.	

Explain	the	semantics	of	parallel	streams.	

(4	marks)	

(c) With	 reference	 to	message	 passing	 concurrent	 implementations	 explain	

the	difference	between	channel-based	 systems	and	actor-based	systems.	

What	type	of	message	passing	system	does	Scala	use?	

(5	marks)	

(d) The	program	listed	below	uses	4	threads	to	calculate	the	sum	of	the	even	

values	in	an	integer	array.	It	divides	the	workload	equally	between	the	4	

threads,	waits	for	them	to	complete	their	calculations	and	then	calculates	

86

the	final	result	by	invoking	the	result	method	of	each	thread.	The	code	for	

the	thread	class	Summer	is	also	given.	

Your	 task	 is	 to	re-write	 this	 code	using	relevant	 functions	and	a	parallel	

stream.	See	Appendix	B	for	a	list	of	relevant	methods.	

import	java.util.function.*;	

import	java.util.stream.*;	

import	java.util.stream.Collectors.*;	

public	class	Question6{	

	 public	static	void	main(String	args[]){	

	 	 Integer	data[]	=	new	Integer[1000];	

	 	 for(int	j	=	0;	j	<	1000;	j++)	data[j]	=	(int)(Math.random()*10000);	

	 	 Summer	th[]	=	new	Summer[4];	

	 	 for(int	j	=	0;	j	<	4;	j++){	

	 	 		th[j]	=	new	Summer(data,j*250,(j+1)*250);	

	 	 		th[j].start();	

	 	 }	

	 	 for(Summer	t	:	th)	

	 	 		try{t.join();}		

	 	 		catch(InterruptedException	e){}	

	 	 Integer	k	=	0;	

	 	 for(int	j	=	0;	j	<	4;	j++)	k	+=	th[j].result();	

	 	 System.out.println("Sum	=	"+k);	

	 }	

}	

class	Summer	extends	Thread{	

	 Integer[]	dt;	

	 int	lb,	ub;	

	 Integer	sum;	

	 Summer(Integer[]	f,	int	l,	int	u){	

	 	 dt	=	f;	lb	=	l;	ub	=	u;	

	 }	

	 public	void	run(){	

	 		sum	=	0;	

	 		for(int	j	=	lb;	j	<	ub;	j++){	

	 				if(dt[j]	%	2	==	0)	

	 							sum	+=	dt[j];	

	 		}	

	 }	

	 public	Integer	result(){return	sum;}	

}	

	
(7	marks)	

Total	(20	marks)	

	

87

Appendix	A	
	
Template	for	ForkJoin	Pool	Task	
	

class	<Name>	extends	RecursiveTask<V>	{	

				static	final	int	BaseBlockSize	=	…;	

				<Name>(…){	

								//constructor	

				}	

				protected	<V>	compute()	{	

								if(…	<=	BaseBlockSize)	{	

												//	execute	sequential	code	

									}	else	{	

												//divide	job	size	

												<Name>	left		=	new	<Name>(…);	

												<Name>	right	=	new	<Name>(…);	

												left.fork();	

	 	 right.fork();	

												<V>	<varName>	=	right.join();	

												<V>	<varName>		=	left.join();	

												return	<result>;	

									}	

					}	

}	

	

	

	 	

88

Appendix B
Tables Listing Function and Stream Methods
	

Specialized	Function	Types	
Function		
Name	

Argument	
Type	

Return		
Type	

Abstract	
Method	
Name	

Purpose	

Supplier<T>	 None	 T	 get	 Takes	no	argument	

and	return	a	value	of	

type	T	

Consumer<T>	 T	 void	 accept	 Consumes	a	value	of	

type	T	

Function<T,K>	 T	 K	 apply	 A	function	that	takes	

a	value	of	type	T	as	

argument	and	returns	

a	value	of	type	K	

BiFunction<T,U,R>	 T,U	 R	 apply	 A	function	that	takes	

two	arguments	of	

type	T,	U	,and	returns	

a	value	of	type	K	

BiConsumer<T,U>	 T,	U	 void	 accept	 Consumes	values	of	

type	T	and	U	

UnaryOperator<T>	 T	 T	 apply	 A	function	that	takes	

a	value	of	type	T	as	

argument	and	returns	

a	value	of	type	T	

BinaryOperator<T>	 T,	T	 T	 apply	 A	function	that	takes	

two	values	of	type	T	

as	argument	and	

returns	a	value	of	

type	T	

Predicate<T>	 T	 boolean	 test	 A	function	that	takes	

a	value	of	type	T	and	

returns	a	boolean	

value.	

BiPredicate<T,	U>	 T,	U	 boolean	 test	 A	function	that	takes	

two	arguments	of	

type	T	and	U	and	

returns	a	boolean	

value.	

	

Stream	Supplier	Methods	

89

Supplier	
Name	

Argument	Type	 Return	Type	 Semantics	

generate()	 Supplier<T>	f	 static<T>	Stream<T>	 Returns	an	infinite	

stream	of	values	

where	each	value	is	

generated	by	the	

Supplier	function	f.	

iterate()	 T	seed,		

UnaryOperator	<T>	f	

static<T>	Stream<T>	 Returns	an	infinite	

stream	of	values	

obtained	by	

recursive	

application	of	the	

the	function	

generating	the	

sequence	seed,	

f(seed),	f(f(seed)),	..	

limit()	 long	maxSize	 Stream<T>	 Limits	the	number	

of	elements	supplied	

through	a	stream	to	

at	most	maxSize.	

of()	 T	…	values	 static<T>	Stream<T>	 Returns	a	stream	

whose	elements	are	

the	specified	values	

	

	

Stream	Consumer	Methods	
Consumer	
Name	

Argument	Type	 Return	
Type	

Semantics	

forEach()	 Consumer<?	

Super	T>		

Void	 Executes	consumer	function	

for	each	element	supplied	by	

the	stream	

allMatch()	 Predicate<?	Super	

T>		

boolean	 Returns	true	if	all	elements	

supplied	by	the	stream	satisfy	

the	given	predicate;	false	

otherwise	

anyMatch()	 Predicate<?	Super	

T>	

boolean	 Returns	true	if	any	element	

supplied	by	the	stream	

satisfies	the	given	predicate;	

false	otherwise	

count()	 	 long	 Returns	the	number	of	

elements	supplied	by	the	

stream	

	

	 	

90

Stream	Intermediate	Operation	Methods	
Name	 Argument	Type	 Return	Type	 Semantics	
filter()	 Predicate<?	Super	T>	 Stream<T>	 Returns	a	stream	of	

those	elements	it	

receives	that	satisfy	the	

given	predicate.	

map()	 Function<?	Super	T,	?	

extends	R>	

<R>	

Stream<R>	

Returns	a	stream	of	the	

elements	it	receives	

mapped	by	the	given	

function		

flatMap()	 Function<?	Super	T,	?	

extends	Stream<?	

extends	R>>		

<R>	

Stream<R>	

This	operation	applies	a	

function	that	itself	

returns	a	stream	to	each	

element	of	this	stream.	

distinct()	 	 Stream<T>	 Returns	a	stream	

consisting	of	the	distinct	

elements	in	this	stream.	

The	definition	of	

equality	is	based	on	the	

equals	method	

implemented	for	the	

given	class.	

sorted()	 	 Stream<T>	 Returns	a	stream	of	the	

elements	of	the	

consumed	stream,	

sorted	by	natural	order	

(based	on	

implementation	of	

compareTo)	

sorted()	 Comparator(?	super	T	

compare)	

Stream<T>	 Returns	a	stream	of	the	

elements	of	the	

consumed	stream,	

sorted	by	order	defined	

by	the	Comparator	

(based	on	

implementation	of	

compare).	

		

