
24

Module 26 Distributed Systems

Module title Distributed Systems
Module NFQ level (only if an NFQ level can be
demonstrated)

8

Module number/reference BSCH-DS

Parent programme(s)
Bachelor of Science (Honours) in Computing
Science

Stage of parent programme Award stage
Semester (semester1/semester2 if applicable) Semester 1
Module credit units (FET/HET/ECTS) ECTS
Module credit number of units 10
List the teaching and learning modes Direct, Blended
Entry requirements (statement of knowledge, skill
and competence)

Learners must have achieved programme
entry requirements.

Pre-requisite module titles BSCH-CH, BSCH-OSD, BSCH-DNA
Co-requisite module titles None
Is this a capstone module? (Yes or No) No
Specification of the qualifications (academic,
pedagogical and professional/occupational) and
experience required of staff (staff includes
workplace personnel who are responsible for
learners such as apprentices, trainees and learners in
clinical placements)

Qualified to as least a Bachelor of Science
(Honours) level in Computer Science or
equivalent and with a Certificate in Training
and Education (30 ECTS at level 9 on the
NFQ) or equivalent.

Maximum number of learners per centre (or instance
of the module)

60

Duration of the module One Academic Semester, 12 weeks teaching
Average (over the duration of the module) of the
contact hours per week

4

Module-specific physical resources and support
required per centre (or instance of the module)

One class room with capacity for 60 learners
along with one computer lab with capacity
for 25 learners for each group of 25 learners

25

Analysis of required learning effort

Minimum ratio

teacher / learner
Hours

Effort while in contact with staff
 Classroom and demonstrations 1:60 30
 Monitoring and small-group teaching 1:25 18
 Other (specify)
Independent Learning
 Directed e-learning
 Independent Learning 102
 Other hours (worksheets and assignments) 100
 Work-based learning – learning effort
Total Effort 250

Allocation of marks (within the module)

Continuous
assessment

Supervised
project

Proctored practical
examination

Proctored written
examination

Total

Percentage
contribution

40% 60% 100%

Module aims and objectives
The aim of the module is to teach the theoretical and practical underpinnings of
distributed system design and implementation. Learners are introduced to the myriad
of issues involved when moving from a single computer system to one composed of
multiple nodes. Issues covered include but are not limited to: processes,
communication, consistency, replication, leader election, fault tolerance, and clock
synchronisation. Learners are exposed to the compromises that must be made during
design in each of these areas with respect to the entire system.

The objectives of the module are to give learner the ability to consider all of the issues
presented above such that they can design and implement distributed systems. These
systems that are produced focus on areas desired in the required system while also
trying to minimise the trade-offs that are built into the design of said system.

Minimum intended module learning outcomes
On successful completion of this module, the learner will be able to:

1. Explain the challenges involved in designing and developing distributed
systems

2. Compare different architectural and communication models

3. Write distributed applications through the use of a middleware layer

4. Explain clock synchronisation and system state capturing strategies

26

5. Evaluate appropriate distributed algorithms for leader election and mutual
exclusion

6. Describe how faults are tolerated and handled (e.g. abnormal process
termination, byzantine failures)

7. Discuss the challenges and mechanisms involved in maintaining consistency
and replication

Rationale for inclusion of the module in the programme and its contribution to the
overall MIPLOs
The module enables learners to design, implement, and interact with distributed
systems. This forms the basis of cloud computing which is a model more web based
services and applications are migrating to, particularly including those that have a
mobile component where multiple mobile devices and instances in the cloud are
communicating and working together. Appendix 1 of the programme document maps
MIPLOs to the modules through which they are delivered.

Information provided to learners about the module
Learners receive a programme handbook to include module descriptor, module
learning outcomes (MIMLO), class plan, assignment briefs, assessment strategy, and
reading materials.

Module content, organisation and structure
Distributed systems overview

• Design goals and challenges: heterogeneity, openness, scalability, consistency,
transparency, mobility, fault tolerance, security

• Fundamental concepts: multicomputer vs multiprocessor systems
• Tightly vs loosely coupled systems, horizontal vs vertical distribution
• Middleware based systems.

Processes

• Threads and Processes: using threads to overlap communication and
computation, progress migration, multithreaded clients and servers.

• Virtualisation (both resource and network), virtualisation architecture, PVM
and VMM models of virtualisation.

• Stateful vs stateless processes
• Code migration, Weak mobility, Strong mobility.

Communication

• Synchronous and Asynchronous communication
• Sockets
• RPC

27

• Message Passing
• Message Oriented Middleware

Consistency and Replication

• The need for replication in a distributed system and the challenges it poses
• How much replication? And how to implement it
• Consistency of replicated data/state and ensuring it gets updated correctly
• Corruption of replicated data/state and resolving it

Clock Synchronisation

• Concept of time in distributed systems
• Physical vs logical time
• Clock synchronisation algorithms
• NTP (Network Time Protocol)
• Vector clocks
• Coordination, Mutual Exclusion, Leader election
• Distributed algorithm properties: fairness, liveliness, safety
• Distributed algorithms for leader election, mutual exclusion, and coordination

Fault tolerance

• Fault tolerance: Availability, Reliability, Safety, and Maintainability
• Faults, Errors, and Fault Tolerance
• Transient, Intermittent, permanent faults, and Failure models
• Failure masking with redundancy or replication, design issues this presents
• Fault tolerance without and with byzantine failures

Distributed system architectures

• Layered architecture
• Object based architecture
• Data Centred architecture
• Event based architecture
• Centralised architecture
• Multitiered architecture
• Decentralised architecture
• Peer to Peer architecture

Case studies

• Examples of distributed system use in the real world
• Bittorrent
• BOINC (SETI@home etc)

28

• Blockchain
• Other examples may be used here.

Module teaching and learning (including formative assessment) strategy
The module is taught as a combination of lecture and lab sessions. The lecture
sessions discuss and explain to learners the challenges involved in both designing and
implementing distributed systems. Learners are exposed to issues including but not
limited to: consistency, replication, process management, and communication. In the
practical lab sessions learners have the opportunity to interact and develop
distributed applications for through the use of a middle ware layer. This gives learners
exposure to the challenges of synchronising distributed processes, debugging
distributed applications, and the need to account for the cost of communication in a
distributed system.

Assessment is split into two. In terms of continuous assessment there are three major
assignments that first test the learner’s ability to make a working distributed
application before moving onto more challenging applications that involve larger
communication and cooperation. Finally, there is an end of semester exam that tests
the learners understanding of the theoretical material.

Timetabling, learner effort and credit
The module is timetabled as one 2.5-hour lectures and one 1.5-hour lab per week.

The number of 10 ECTS credits assigned to this module is our assessment of the
amount of learner effort required. Continuous assessment spreads the learner effort
to focus on the issues and challenges that arise with distributed system programming.

There are 48 contact hours made up of 12 lectures delivered over 12 weeks with
classes taking place in a classroom. There are also 12 lab sessions delivered over 12
weeks taking place in a fully equipped computer lab. The learner will need 102 hours
of independent effort to further develop the skills and knowledge gained through the
contact hours. An additional 100 hours are set aside for learners to work on
worksheets and assignments that must be completed for the module.

The team believes that 250 hours of learner effort are required by learners to achieve
the MIMLOs and justify the award of 10 ECTS credits at this stage of the programme.

Work-based learning and practice-placement
There is no work based learning or practice placement involved in the module.

29

E-learning
The college VLE is used to disseminate notes, advice, and online resources to support
the learners. The learners are also given access to Lynda.com as a resource for
reference.

Module physical resource requirements
Requirements are for a classroom for 60 learners equipped with a projector, and a 25
seater computer lab for practical sessions with access to a Distributed System SDK and
IDE (for example MPI but this may change should better technologies arise).

Reading lists and other information resources
Recommended Text
Burns, B. (2018) Designing Distributed Systems. Sebastopol: O’Reilly Media.

Gropp, W. (2015) Using MPI: Portable Parallel Programming with the Message-
Passing Interface. Cambridge: MIT Press.

Tanenbaum, A. S. and Steen, M. van (2014) Distributed Systems Principles and
Paradigms. Harlow: Pearson.

Secondary Reading:
Gropp W. (2015) Using Advanced MPI: Modern Features of the Message-Passing
Interface. Cambridge: MIT Press.

Specifications for module staffing requirements
For each instance of the module, one lecturer qualified to at least Bachelor of Science
(Honours) in Computer Science or equivalent, and with a Certificate in Training and
Education (30 ECTS at level 9 on the NFQ) or equivalent.. Industry experience would
be a benefit but is not a requirement.

Learners also benefit from the support of the programme director, programme
administrator, learner representative and the Student Union and Counselling Service.

30

Module Assessment Strategy
The assignments constitute the overall grade achieved, and are based on each
individual learner’s work. The continuous assessments provide for ongoing feedback
to the learner and relates to the module curriculum.

No. Description MIMLOs Weighting

1

Practical Assignment that introduces the learners
to a basic distributed system application. It
covers the setup of processes and the basic
mechanisms of communication

1,3 7.5%

2

Practical Assignment that builds a distributed
systems application with more communication
and processing. Learners are expected to
synchronise and coordinate distributed processes.

1,3 12.5%

3

Practical Assignment that asks learners to design
and build a distributed system using a learner
chosen architecture. Only a brief description of
the distributed system functionality is given.

1,2,3 20%

4
Written exam that tests the theoretical aspects of
the module

1-7 60%

All repeat work is capped at 40%.

Sample assessment materials

Note: All assignment briefs are subject to change in order to maintain current content.

31

Assignment 01: Monte Carlo Simulation to determine the
number PI

Introduction:
 In this assignment you will be tasked with determining the value of the number
PI through simulation. Determining an accurate value of PI is difficult to do through
normal methods because PI is an irrational number i.e. there is no single fraction that
can express the value of PI. Thus to determine the value of PI we must use other
methods. In this case we will use Monto Carlo Simulation where we generate the value
of PI by using random sampling.
 In order to simulate this we will need to remember our formula for the area of
a circle, which in case you have forgotten is PI * radius * radius. If we take a circle that
has a radius of 1 we get an area of PI * 1 * 1 which simplifies to PI. We will then enclose
this in a square that is 2 units wide and 2 units high, such that the circle touches the
square on all four sides. The coordinates of the bottom left of the square is (-1, -1) and
the top right of the square is (1,1) with the circle centered at (0,0). Random points
should be generated between [-1,1] in both x and y. If the random point is less than or
equal to a distance of 1 from (0,0) then it will be counted as being in the circle.
 We then count up the number of samples that we took (call this n) and also
the number of samples that were in the circle (call this x). By dividing x by n we get the
percentage of samples in the circle (call this p). If we consider that the ratio of the area
of the circle to the area of the square is PI/4 then to get the full value of PI we must
multiply p by 4.
 This is an example of an embarrassingly parallel problem that is well suited to
a distributed system. You should see near linear performance increase in this
application when you add more nodes.
Notes:
 You have two weeks to do this assignment. Standard penalties will be applied
to work that is submitted so much as a second late. The time of submission as
displayed by the moodle will be the reference point for lateness.
 You must submit a single zip file (naming does not matter) that contains two
files: 1 c++ file containing your MPI source code, and 1 PDF file containing the report
you write. Anything other than a PDF will not be accepted. (there are tools for
converting DOC to PDF available e.g. the foxit reader plugin, those of you using libre
office or LaTeX have direct export to PDF)
 Code that fails to compile will incur a penalty of 30%. The accepted
compression formats for your archives are tar.gz/tar.bz2/tar.xz/zip/rar/7z any format
outside of this will incur a 10% penalty.
 For the purposes of this assignment you will only need three standard header
files <iostream>, <cstdlib> and <mpi.h> for the timing task you may need an extra
header or two.

32

Task List:
01) write a main method that will initialise MPI, figure out the world rank and world
size. Rank 0 should be the coordinator while all other ranks should be participants.
Then finalise MPI and return a status of 0 to the OS (10%)
02) write a coordinator method that takes in a single variable (the world size). It should
run a monte carlo simulation for a set number of samples. Then it should collect the
number of hits from all participant notes (you may only use MPI_Recv() here) and
calculate the overall hit ratio for the collection of samples. Display the result of PI on
the console (25%)
03) write a participant method that does a similar simulation as 02 above but will
communicate its total number of hits to the master (you may only use MPI_Send()
here) when it is finished (15%)
04) modify your code in such a way that the total number of samples each node
produces can be changed by simply changing the value of a global constant (5%)
05) modify your code in such a way that regardless of how many nodes are used (2, 4,
8, 16, etc) your code needs no modification to function correctly (5%)
05) write a report that analyses two things. First show the progress of your algorithm
calculating the value of PI in increments of 4 million samples (use 4 nodes and
increment your total samples by 1 million each time) and find where your algorithm
returns a value of 3.14159. (20%)
06) compare the speed of your algorithm when using a single node, 2 nodes, and 4
nodes in increments of 4 million samples up to 40 million samples and display these
results on a graph. What kind of speed up do you get and explain why. (20%)

33

Assignment 02: Using scatter reduce and broadcast to perform
basic statistics on a data set

Introduction:
 In this assignment you will be tasked with performing a statistical analysis of a
set of numbers. You are required to calculate the mean and then calculate the
standard deviation of the set of numbers. However in this case you will be required to
generate all numbers on the first node and using the broadcast and scatter commands
you will distribute this data to all nodes that are participating.
 Once the numbers have been scattered you will be required to calculate an
overall mean for the dataset. However, as there are multiple mean values you must
use a reduce command to receive those values on a coordinator node. It will calculate
the overall mean and once calculated will broadcast this back to all nodes for
calculating the standard deviation. The results are then reduced on the coordinator
node again to compute an overall standard deviation.
Notes:
 You must submit a single zip file (naming does not matter) that contains one
c++ file containing your MPI source code. Code that fails to compile will incur a penalty
of 30%. The accepted compression formats for your archives are
tar.gz/tar.bz2/tar.xz/zip/rar/7z any format outside of this will incur a 10% penalty.
 For the purposes of this assignment you will only need four standard header
files <iostream>, <cstdlib>, <cmath> and <mpi.h>.

Task List:
01) write a main method that will initialise MPI, figure out the world rank and world
size. Rank 0 should be the coordinator while all other ranks should be participants.
Then finalise MPI and return a status of 0 to the OS (5%)
02) write a printArray method that will print out an array to console in a single line. It
should accept two parameters a pointer to the array and the size of the array. (2%)
03) write a sum method that takes in a reference to an array and an array size it should
return the sum of all the values in that array (3%)
04) write a sumDifferences method that takes in a reference to an array, an array size,
and the overall mean of the dataset. It should produce a sum of the square of
differences between each value in the dataset and the mean and return this as the
result (5%)
05) write coordinator and participant methods that do the following (65%)
generate the array of numbers (coordinator only). for predictable results seed the
random number generator with the value of 1 and limit their maximum value to 50.
(5%)
determine the size of each partition (coordinator only). Broadcast this to all nodes.
(10%)

34

scatter the partitions to each node. (10%)
calculate the mean for this node. Use a reduce operation to gather the overall average.
(10%)
Compute the overall average (coordinator only). (5%)
Broadcast the overall average to all nodes and then compute the sum of differences
(10%)
reduce the overall sum of differences (10%)
calculate the standard deviation and print out the dataset, mean and standard
deviation (coordinator only) (5%)
06) modify your code to work with any world size and accept a dataset size from the
command line. You may assume that the dataset size will be evenly divisible by the
world size (10%)
07) Do a comparison of four nodes against a single node on dataset of different sizes.
Try to find a crossover point where the four node version is faster than the single node
version. Produce a graph containing this cross over point. Provide a short one page
commentary on what this graph states about your algorithm (10%)

35

Assignment 03: Using scatter, gather and broadcast to
perform parallel matrix multiplication

Introduction:
 In this assignment you will be tasked with building a fully working parallel
matrix multiplier. Matrix multiplication is a common task in many scientific
applications and large matrices take time to compute. However, if divided in the right
way the task can be parallelised efficiently.
 In this assignment you will need to multiply two matrices together using the
stripe method of matrix multiplication. The block method is more efficient but it is
recommended that you implement the stripe first before you try the block. You will
have three matrices A,B and C that represent the operation A x B = C. You will be
required to determine how many nodes are in your compute group and create even
stripes for A to be divided amongst the nodes. All nodes will receive a copy of B. Each
node will do a matrix multiplication of its stripe of A will the matrix B to generate its
stripe of C. Finally all nodes will use the gather operation to send back the stripes to
the coordinator node wherein it will be reassembled into a single matrix.
 You may assume that all of your matrices are square (NxN) and that N is evenly
divisible by the number of nodes. The support file you will get for generating matrices
will generate 8x8 matrices and thus will work well with 4 nodes for testing. All
matrices must be passed in on the command line along with the number of elements
in a row or column e.g. to pass in two matrices you would do something like this
 mpirun -n 4 ./assignment03 matA.dat matB.dat 8
The matrices should only be read by the coordinator process.

Notes:
 You must submit a single zip file (naming does not matter) that contains
one c++ file containing your MPI source code. Code that fails to compile will incur a
penalty of 30%. The accepted compression formats for your archives are
tar.gz/tar.bz2/tar.xz/zip/rar/7z any format outside of this will incur a 10% penalty.
 For the purposes of this assignment you will only need four standard header
files <iostream>, <cstdlib>, <cmath> and <mpi.h>.

Task List:
01) write a main method that will initialise MPI, figure out the world rank and world
size. Rank 0 should be the coordinator while all other ranks should be participants.
Then finalise MPI and return a status of 0 to the OS (5%)
02) Add the following helper methods to your code (15%)

• printMatrix() will print a 2D matrix to the console

• dotProduct() will that multiply a row of matrix A with a column from matrix B
that will return a single value that is the dot product of the row and column

• multiplyStripe() takes in a stripe of A, a matrix of B and computes a stripe of

36

C.

03) Write coordinator and participant methods that do the following interactions
(80%)

• read in matrices A and B from disk. (coordinator only)

• broadcast a message stating that the computation will be performed if the
matrices are present and correct and that we have the correct number of
command line arguments. Give a different message otherwise

• Take part in multiple broadcasts that will tell all nodes the size of a matrix, the
size of a stripe and the size of an individual row.

• Allocate the necessary memory for the stripes and matrices required

• Take part in a scatter to distribute the stripes of A and take part in a broadcast
to get the full copy of B

• perform the multiplication and take part in a gather to send all stripes of C
back to the coordinator

• print out the matrix (coordinator only) and deallocate all memory.

37

GRIFFITH COLLEGE DUBLIN

QUALITY AND QUALIFICATIONS IRELAND

EXAMINATION

DISTRIBUTED SYSTEMS

Lecturer(s):

External Examiner(s):

Date: XXXX Time: XXXXXXX

THIS PAPER CONSISTS OF FIVE QUESTIONS
FOUR QUESTIONS TO BE ATTEMPTED
ALL QUESTIONS CARRY EQUAL MARKS

APPENDIX AT THE BACK OF THE EXAMINATION PAPER

38

QUESTION 1
(a) What is the purpose of Message Oriented Middleware, and how does it handle

communication in a network? Illustrate and describe the four different models
of loosely-coupled communication between nodes in the message queuing
model.

(13 marks)
(b) Differentiate between discrete media and continuous media. In what way does

transmission of continuous media have more stringent requirements than
discrete media with regards to streaming?

(5 marks)
(c) What are the main features of a data stream? Explain the difference between

synchronous and asynchronous transmission, providing examples.
(7 marks)

Total (25 marks)
QUESTION 2
(a) Define the main goal of a distributed system.

(5 marks)
(b) Explain with the aid of a diagram the operation of a layered architecture.

(9 marks)
(c) There are several different transparencies associated with distributed systems.

(i) In relation to a Distributed System, explain what ‘transparency’ means.
(ii) Discuss any three different forms of transparency.

(11 marks)
Total (25 marks)

QUESTION 3
(a) In relation to failure handling:

(i) Explain the concept of redundancy. Include in your answer two
approaches to redundancy.

(ii) Differentiate between a fail-safe and a fail-silent system.
(7 marks)

(b) Write a brief explanatory note on transient, intermittent, and permanent
faults. Include an example of each in your solution.

(6 marks)
(c) Briefly outline the four requirements that must be satisfied for a distributed

system to be considered fault tolerant and dependable.
(12 marks)

Total (25 marks)

39

QUESTION 4

(a) Discuss three issues associated with group membership.

(6 marks)

(b) How does the amount of replication differ in a K fault tolerant system with and
without Byzantine faults? State any assumptions and relevant formulas.

(7 marks)

(c) With the aid of a diagram describe how a Hierarchical feedback control system
works. You should include an explanation of how a message is multicasted in
your answer.

(12 marks)

Total (25 marks)

QUESTION 5

(a) The code listed below is the outline of a distributed application. Some of the
code is not listed here, the comments explain what would be in the full code.
Briefly explain what the code below does.

(10 marks)

(b) What would be better to use instead of MPI_Send and MPI_Recv in this code?
It is not necessary to answer with full source code, just indicate any changes
that could be made to the current code.

(5 marks)

(c) What would be printed to the console when this application was run on a
system that contains 4 nodes?

(5 marks)

(d) Would the output you have given in c) always look exactly as you have
provided?

(5 marks)

Total (25 marks)

40

Below is the C++ source code for program – nodeMsg
01 #include <iostream>
02 #include <mpi.h>
03
04 #define MASTER 3
05 #define SLAVE_TEST 400
06 #define SLAVE_INFO 401
07 #define SLAVE_CALC 402
08
09 int main(int argc, char **argv) {
10
11 MPI_Init(NULL, NULL);
12
13 int size, rank;
14 MPI_Comm_size(MPI_COMM_WORLD, &size);
15 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
16
17 int msg;
18 if(rank == MASTER) {
19 msg = SLAVE_CALC;
20 for(int i = 0; i < size; ++i){
21 if(i != MASTER){
22 MPI_Send(&msg, 1, MPI_INT, i, 0, MPI_COMM_WORLD);
23 }
24 }
25 } else {
26 MPI_Recv(&msg, 1, MPI_INT, MASTER, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
27 if(msg == SLAVE_INFO){
28 //SELF TEST CODE WOULD BE HERE
29 std::cout << "Slave rank" << rank << " INFO" << std::endl;
30 }
31
32 if(msg == SLAVE_TEST){
33 //SELF TEST CODE WOULD BE HERE -- WE ASSUME NODE IS OK
34 std::cout << "Slave rank" << rank << " OK" << std::endl;
35 }
36
37 if(msg == SLAVE_CALC){
38 //SOME CALCULATION HAPPENS HERE -- PRINT DONE
39 std::cout << "Slave rank" << rank << " DONE" << std::endl;
40 }
41 }
42
43 MPI_Finalize();
44 return 0;
45 }

