
2

Module 9 Object Orientated Programming

Module title Object Orientated Programming
Module NFQ level (only if an NFQ level can be
demonstrated)

6

Module number/reference BSCH-OOP

Parent programme(s)
Bachelor of Science (Honours) in
Computing Science

Stage of parent programme Stage 2
Semester (semester1/semester2 if applicable) Semester 1
Module credit units (FET/HET/ECTS) ECTS
Module credit number of units 10
List the teaching and learning modes Direct, Blended
Entry requirements (statement of knowledge, skill and
competence)

Learners must have achieved
programme entry requirements.

Pre-requisite module titles BSCH-CP
Co-requisite module titles None
Is this a capstone module? (Yes or No) No

Specification of the qualifications (academic, pedagogical
and professional/occupational) and experience required
of staff (staff includes workplace personnel who are
responsible for learners such as apprentices, trainees and
learners in clinical placements)

Qualified to as least a Bachelor of
Science (Honours) level in Computer
Science or equivalent and with a
Certificate in Training and Education
(30 ECTS at level 9 on the NFQ) or
equivalent.

Maximum number of learners per centre (or instance of
the module)

60

Duration of the module
One Academic Semester, 12 weeks
teaching

Average (over the duration of the module) of the contact
hours per week

5

Module-specific physical resources and support required
per centre (or instance of the module)

One class room with capacity for 60
learners along with one computer lab
with capacity for 25 learners for each
group of 25 learners

3

Analysis of required learning effort

Minimum ratio

teacher / learner
Hours

Effort while in contact with staff
 Classroom and demonstrations 1:60 24
 Monitoring and small-group teaching 1:25 36
 Other (specify)
Independent Learning
 Directed e-learning
 Independent Learning 100
 Other hours (worksheets and assignments) 90
 Work-based learning – learning effort
Total Effort 250

Allocation of marks (within the module)

Continuous
assessment

Supervised
project

Proctored practical
examination

Proctored written
examination

Total

Percentage
contribution

60% 40% 100%

Module aims and objectives
This module builds on the work completed in the first year Computer Programming
module and extends the learners knowledge of programming by giving a
comprehensive analysis of object-oriented programming. This paradigm leads to
software architectures based on the objects every system or subsystem manipulates.
In this view software systems are operational models of real or virtual world activities
based around the objects that populate these worlds: people, cars, houses, stacks,
sets, queues. As in all programming modules, a key objective is the acquisition, on
behalf of the learner, of good software engineering skills and the application of these
skills to the design and implementation of software components.

Minimum intended module learning outcomes
On successful completion of this module, the learner will be able to:

1. Explain the main reasons behind the development of the object-oriented
model of software development

2. Implement classes that encapsulate both simple and complex behaviours

3. Explain the relationship between encapsulation and public interfaces

4. Define both inheritance and composition and the differences between them

5. Design and implement classes that use inheritance and composition

6. Apply abstract concepts in an object-oriented manner

7. Develop high quality software that is reliable, reusable and maintainable

4

Rationale for inclusion of the module in the programme and its contribution to the
overall MIPLOs
Computer programming is a fundamental skill in computing science. This module
expands the domain of knowledge for the Learner and introduces a new programming
paradigm. Appendix 1 of the programme document maps MIPLOs to the modules
through which they are delivered.

Information provided to learners about the module
Learners receive a programme handbook to include module descriptor, module
learning outcomes (MIMLO), class plan, assignment briefs, assessment strategy and
reading materials.

Module content, organisation and structure

Introduction and motivation

• Review of procedural paradigm and its limitations.
• Outline of key reasons for development of object-oriented paradigm

Classes and Objects

• Encapsulation: class definition, private, public modifiers, public methods.
• Examples of class definitions and programs that interact with public class

interfaces.

Composition and Inheritance

• Composing new classes from existing classes.
• Protecting encapsulation. Inheritance and class hierarchies.
• Access modifier protected.
• Polymorphism, multiple inheritance and interfaces.
• Abstract classes.

Immutable objects

• Defining classes that have immutable state.
• Examples from Java – String, Integer, Double, Boolean, Character.

Object class

• Need to override methods toString, equals and hashCode.
• The comparable interface and implementing the compareTo method.
• Examples of classes that implement comparable interface and override equals,

hashCode and toString. Hashing functions.

5

• Issues around problem of cloning and copy constructors.
• The equals contract in Java and issues that arise around inheritance and

satisfying the equals contract.

Static Members and Enumerated Types

• Class static members.
• Singleton classes.
• Enumerated types.
• Programming examples of each one.

Robustness and Exceptions

• Examples of the different types of exception and methods for both throwing
and catching exceptions.

• Programming with exceptions.
• Writing exception handlers.

Collection classes

• Genericity and the Collection classes.
• Sets, Lists, ArrayLists and Maps.
• Using collection classes and user-defined classes.
• Traversing collections.

Module teaching and learning (including formative assessment) strategy
The module is delivered through a combination of lectures and practical lab
programming sessions. The learners complete a series of worksheets throughout the
module that are directly related to the material covered in lectures. The emphasis is
on developing sound software engineering skills in practical programming based on
theoretical knowledge.

Assessment consists of a series of continuous assignments and a final examination.
Each week learners are required to complete a series of programming tasks that relate
to the material covered in lectures. The practical lab sessions are used to enforce
concepts covered in the lectures and the worksheets are used to ensure that learners
are keeping up with the material as it is delivered. Lab sessions are also used to deal
with issues emerging from the worksheets. All work submitted by learners is assessed
and comments are given to individual learners. Typically, there are 10 worksheets and
the final mark is based on the 7 best pieces of work submitted.

Timetabling, learner effort and credit

6

The module is timetabled as one 2-hour lecture and two 1.5-hour labs per week.

The number of 10 ECTS credits assigned to this module is our assessment of the
amount of learner effort required. Continuous assessment spreads the learner effort
to focus on small steps before integrating all steps into the overall process of computer
program design and implementation.

There are 60 contact hours made up of 12 lectures delivered over 12 weeks with
classes taking place in a classroom. There are also 24 lab sessions delivered over 12
weeks taking place in a fully equipped computer lab. The learner will need 100 hours
of independent effort to further develop the skills and knowledge gained through the
contact hours. An additional 90 hours are set aside for learners to work on worksheets
and assignments that must be completed for the module.

The team believes that 250 hours of learner effort are required by learners to achieve
the MIMLOs and justify the award of 10 ECTS credits at this stage of the programme.

Work-based learning and practice-placement
There is no work based learning or practice placement involved in the module.

E-learning
The college VLE is used to disseminate notes, advice, and online resources to support
the learners. The learners are also given access to Lynda.com as a resource for
reference.

Module physical resource requirements
Requirements are for a classroom for 60 learners equipped with a projector, and a 25-
seater computer lab for practical sessions with access to Java and a suitable
development environment (for example Notepad++) (this may change should better
technologies arise).

Reading lists and other information resources
Recommended Text
Deitel, P. J. and Deitel, H. M. (2018) Java: How to Program. New York: Pearson.

Secondary Reading:
Baesens, B. and Vohra, D. (2015) Beginning Java Programming: the Object Oriented
Approach. Hoboken: Wiley.

Nino, J. and Hosch, F. A. (2008) Introduction to Programming and Object Oriented
Design using Java. Hoboken: Wiley.

7

Meyer, B. (1997) Object-oriented Software Construction. Upper Saddle River, NJ:
Prentice Hall.

Specifications for module staffing requirements
For each instance of the module, one lecturer qualified to at least Bachelor of Science
(Honours) in Computer Science or equivalent, and with a Certificate in Training and
Education (30 ECTS at level 9 on the NFQ) or equivalent.. Industry experience would
be a benefit but is not a requirement.

Learners also benefit from the support of the programme director, programme
administrator, learner representative and the Student Union and Counselling Service.

Module Assessment Strategy
The assignments constitute the overall grade achieved, and are based on each
individual learner’s work. The continuous assessments provide for ongoing feedback
to the learner and relates to the module curriculum.

No. Description MIMLOs Weighting

1

A series of worksheets:

Each will relate to the current topic covered
in lectures. Cumulatively they will enforce
learning outcomes 1-8

1-7 60%

2
Written exam that tests the theoretical
aspects of the module

1-7 40%

All repeat work is capped at 40%.

Sample assessment materials
Note: All assignment briefs are subject to change in order to maintain current content.

8

Worksheet 1

Please complete the problems listed below. This assignment forms part of the
assessment for this module and you are required to upload a copy of your solution on
Moodle using the template program listed on Moodle. Please remember to include
your name and student number.
Question 1
Implement a class to model an on/off switch. Your class should have methods to turn
on the switch, turn off the switch and check its current status. The class should have a
toString method that returns its current state as a String. Write a short code block in
to test your class in the file given for this assignment.

Question 2
Design and implement a class called Film that has the following attributes: name of
film, name of director, duration of film measured in minutes and cost of production.
The class should have methods to retrieve information on the current state of each of
its attributes and a toString method that can be used to print its current state. In the
file given for the assignment create 3 instances of the Film class and write a code
fragment that finds the film with the most expensive production cost.

Worksheet 2

Please complete the problems listed below. This assignment forms part of the
assessment for this module and you are required to upload a copy of your solution on
Moodle using the template program listed on Moodle. Please remember to include
your name and student number.

Question 1
A circle in co-ordinate Geometry has a centre, represented by a point in the plane, and
a radius. Write a class that represents a circle. Your class should have methods that:

• return the centre of the circle;
• returns its radius
• calculates its area
• calculates its circumference
• calculates the distance of its centre point from that of a given circle c1
• determines if a point is on the circle
• determines if it intersects with a given circle c1

Question 2
Write a class Email that has two string attributes: home that records the home e-mail
address and work that records the work e-mail. It should have methods to retrieve

9

both addresses and also methods that change email addresses. You may assume that
both e-mail addresses are valid.
Write a class Employee that has three attributes: a surname, a first name and an e-
mail address represented by the class Email. Your constructor should take 3
arguments: surname, firstName and an instance of the Email class.
This class should have methods that return: the name as a string representing both
surname and first name and the e-mails of the employee.
The important point is to write this Employee class so that encapsulation is not
endangered by any of its public methods

Worksheet 3

Please complete the problems listed below. This assignment forms part of the
assessment for this module and you are required to upload your solution to Moodle
before mid-night on Sunday next. A template program is available on Moodle. You
must include as header your name, student number and the assignment number.

Question 1
The class IntManager listed below manages an array of Integer values. Your task is to
complete the methods listed in the interface.
class IntManager{
 private Integer dt[];
 private int size;
 IntManager(int k){dt = new Integer[k]; size = 0;}
 public void add(Integer x){
 if(size < dt.length){
 dt[size] = x; size++;
 }
 }
 /*public boolean found(Integer x){
 //return true if x in dt; false otherwise
 }
 public Integer max(){
 //return largest value in dt; null if size == 0
 }
 public Integer sumOdd(){
 //calculate sum of odd values
 }
 public Integer freq(Integer x){
 //count frequency of occurrence of x in dt
 }

10

 public void sort(){}
 public Integer[] getOdd(){} */
 public String toString(){
 if(size == 0) return "[]";
 String s = "[";
 for(int j = 0; j < size - 1; j++)
 s = s + dt[j] + ",";
 return s+dt[size-1]+"]";
 }
}

Question 2
A local lottery sells a small number of tickets for a draw. Each ticket has only two
numbers selected at random. Numbers are restricted to values in the range 0.5. The
class Ticket that encapsulates an individual ticket is given. A class TicketManager is
also given and its methods are listed in the table below. Your task is to complete the
methods listed. The toString method is given and should not be modified by you.

Method Semantics
TicketManager() Constructor that creates an array of size

maxTickets.
public boolean buy(Ticket t) Adds a ticket to the draw on condition

that the number sold does not exceed
maxTickets. It returns true if successful,
false otherwise.

public int freqWinner(Ticket t) It checks for the number of winning
tickets after a draw takes place.

public boolean search(Ticket t) Searches for the given ticket and returns
true if found; false otherwise.

public int sold() Returns the number of tickets sold.
public boolean allsold() Returns true if all tickets sold; false

otherwise.

11

Worksheet 4

Please complete the question listed below. This assignment forms part of the
assessment for this module and you are required to upload a copy of your work on
Moodle on or before next Sunday before midnight. You must include as header your
name, student number and the assignment number.
Question 1

(a) A computer program for a certain university has to manipulate both lecturers and

students. A class is required for each. Write a class Person that encapsulates what
is common to the notion of a person. The class should include a name, a phone
number, a gender and an all argument constructor. Methods that retrieve name,
phone and gender should be included. It should also have a toString() method that
returns a string representing the state of the class.

(b) A student is a person with additionally a student number and a subject of study.
Write a class Student by extending class Person. It should include a toString()
method and methods to retrieve name, phone, gender, student number and
subject.

(c) A lecturer is a person with additionally a staff number and a department. Write a
class Lecturer by extending class Person. It should include a toString() method and
methods to retrieve details about a lecturer.

(d) Write a simple test program that tests your classes.

Question 2

Write a class Lecturers that encompasses a collection of Lecturer. It should be possible
to add a new lecturer, retrieve all lecturers of a given gender, retrieve all lecturers
working in a given department and find a lecturer given their staff number.

12

Worksheet 5

Question 1

(a) A square is a shape where all sides are the same length. Using the abstract class
Shape write a class to encapsulate a square. A square should also have a diagonal
method that returns the length of its diagonal.

(b) A circle is a shape defined by its radius. Using the abstract class Shape write a class
to encapsulate a circle. In the case of a circle the perimeter is its circumference
length.

Question 2
A rational number is any number that can be expressed as the quotient or fraction of
two integer values, with the denominator not equal to 0. That is, any number that can
be written in the form !

"
, $ℎ&'&), * ∈ ℤ)-.	* ≠ 0. Everyone learned to work with

fractions at some stage in their youth so we just present, without comment, a list of
operators together with their definitions.

)
* +

2
. =

). + *2
*.

)
* −

2
. =

). − *2
*.

)
* ∗

2
. =

)2
*.

!
" 6
7

8 =
)
* ∗

.
2 =

).
*2

We will use these definitions when we implement operators for our rational numbers.

An interesting observation about rational numbers is that equal values can have

different forms. For example, 9
:
= :

;
= ;

<
= <

9=
= ⋯ The normalized value of all of these

fractions is 9
:
 because each of the other values can be simplified to this value.

Note that when you add one rational number to another one the result of the addition
is a new rational number. The original values used in the addition are not changed or
modified. Therefore, operations add, sub, mult, etc all return new Rational numbers.

interface Operations{
 public Rational add(Rational q);
 public Rational sub(Rational q);

13

 public Rational mult(Rational q);
 public Rational multBy(int k);
 public Rational div(Rational q);
 public Rational divBy(int k);
 public boolean eq(Rational q); //returns true if this equals q
}
 The class, as presented below, has a single constructor that takes two integer
arguments It assumes that the denominator, d, is not zero. It also has two attributes,
num and den, that refer to the numerator and denominator of the fraction. The private
function gcd, greatest common divisor, is used to ensure that all fractions are stored
in normalized form. This function calculates the greatest common divisor using only
the absolute values of both the numerator and denominator. Both n and d are divisible
by g.

class Rational implements Operations{
 private int num,den;
 public Rational(int n, int d){//assume d != 0
 if(n < 0 && d < 0){ n = -n; d = -d;}
 else if(d < 0){ n = -n; d = -d;}
 //ensures that d never negative and n positive e.g. 1/-2 is changed to -1/2
 int g = gcd(Math.abs(n), Math.abs(d));
 num = n/g;den = d/g;
 }
 public Rational(int n){//d == 1 ...}
 public int num(){return num;}
 public int den(){return den;}
 public Rational add(Rational q){...}
 public Rational mult(Rational q){...}
 // ... all the other required methods
 public String toString(){...}
 private int gcd(int a, int b){
 if(b == 0) return a;
 else return gcd(b,a%b); }}

14

Worksheet 6

Question 1

Given below is a mutable Car class. Re-write it so that it becomes immutable and write
a simple test program.
class Car{
 private String owner;
 private String reg;
 private String make;
 private int kilometres;
 private double price;
 public Car(String ow, String r, String m, int k, double p){
 owner = ow; reg = r; make = m; kilometres = k; price = p;
 }
 public String owner(){return owner;}
 public String reg(){return reg;}
 public String make(){return make;}
 public int kilometres(){return kilometres;}
 public double price(){return price;}
 public void setPrice(double p){price = p;}
 public void setOwner(String ow){owner = ow;}
 public void setKil(int k){kilometres = k;}
 public void setMake(String m){make = m;}
}
Question 2

Complete the class MyGarage that implements the interface Garage. This interface
has 7 methods. The code for the interface is given in the file Assignment6_2017.java
add(Car c) – add new car to the collection of cars ensuring that its registration number
is unique. If the registration number already exists do not add it and return false.
getCar(String reg) – search for the car with registration number reg.
getMake(String make) – returns a list of cars that match the given make.
totalValue() – calculates the total value of all cars in the list.
changeOwner(String reg, String ow) – change the owner of car that has registration
number reg to ow.
changePrice(String reg, double p) – change price of car given registration number.
reducePricesBy(double per) – reduce prices of all cars by the given percentage.

15

Worksheet 7

Question 1

Listed below is an immutable class Person that has a prsi number (prsi), a name, and
a date of birth. Two persons are said to be if and only if equal is they have the same
prsi number. Write the following methods for your Person class: equals, compareTo,
toString and hashCode. The comparison for ordering purposes is based solely on
the prsi number. Write a simple test that creates two instances of your Person class
and tests each of the methods you have written. Your test program should also create
a small array of persons and use the method Arrays.sort() to sort the array and then
print it. Note: to use this method you must import java.util.*.
final class Person implements Comparable<Person>{{
 private final String prsi;
 private final String name;
 private final String dob;
 Person(String p, String n, String d){
 prsi = p; name = n; dob = d;
 }
 public String prsi(){return prsi;}
 public String name(){return name;}
 public String dob(){return dob;}
}

Question 2
An orthogonal vector is defined by two real values a, b and written in the form)? +
*@. We define equality for two vectors A1 =)? + *@ and A2 = 2? + .@ as follows:

A1 == A2	 ≡) == 2	&&	* == .
Given is a class Vector that encapsulates an orthogonal vector. Your task is to write

an immutable version of this class and implement the following methods: toString

that returns a string representation of the vector; equals that returns true if this

equals that, false otherwise; compareTo that implements the Comparable interface

and hashCode. The comparison, for compareTo, is based on a comparison of the
coefficients of i, and if equal, on the coefficients of j.
class Vector implements Comparable<Vector>{
 private double a,b;
 Vector(double a0, double b0){a = a0; b = b0;}
}

16

Worksheet 8

Question 1
Static members are often used to represent data or calculations that do not change in
response to object state. To illustrate this write a class that has static methods that
convert Fahrenheit to Celsius, Celsius to Fahrenheit, miles to kilometers and
kilometers to miles. The formulas in each case are: f = (c * 9.0/5.0) + 32, c = (f –
32)*5.0/9.0, k = 1.609*m, m = k /1.609. Your class should be called Converter.
Write a simple program to test your class.

 Question 2
A module encapsulates three attributes: title of module, name of lecturer and the
number of hours for delivery. An outline listing of the class and its attributes are given
in the accompanying file. An equals method, a toString method and a hashCode

are given. You are required to write a compareTo method that implements the

Comparable<Module> interface and a Comparator that orders modules based on

lecturer names. It should be called lectCompare and its signature is given as part of
the class. Note: This comparator should be consistent with the equals method given.

The file Assignment8_2017.java contains a short list of module instances. Write code
to sort and print the list using both the natural ordering and the lecturer comparator.

Question 3

Write a class called Season that enumerates the seasons in the year. This class should

have a toString method that pretty prints the names of the season. Now write a class

Month that enumerates the months of the year. This class should have a toString
method that pretty prints the name of the month and a public method season that

takes a Month as argument and returns the Season it falls in. Write a test program
for your class.

Worksheet 9

Using the class Person defined below create a class Friends that manages a set of
Person. This class should have the following methods:

add(Person p) – add new person to set;

search(Person p) – returns true if p is a member of the set of friends, false
otherwise;
size() – returns number of friends

getSurname(String s) – returns a set of just those persons whose surname is s;

getFirstname(String f) - returns a set of just those persons whose surname is f;

17

getFreq(String f) – returns number of persons whose first name is f;

del(Person p) – remove person p if present;

sort() – returns a sorted list of Person.

You may use a TreeSet or a HashSet for your collection of Person.

final class Person implements Comparable<Person>{
 private final String sName;
 private final String fName;
 Person(String fn, String sn){fName = fn; sName = sn;}
 public String sName(){return sName;}
 public String fName(){return fName;}
 public String toString(){return fName+" "+sName;}
 public boolean equals(Object ob){
 if(!(ob instanceof Person)) return false;
 Person p = (Person)ob;
 return sName.equals(p.sName) && fName.equals(p.fName);
 }
 public int compareTo(Person p){
 if(p == null) return -1;
 if(this.equals(p)) return 0;
 return sName.compareTo(p.sName);
 }
 public int hashCode(){
 return 41 * sName.hashCode() * fName.hashCode();
 }
}

18

GRIFFITH	COLLEGE	DUBLIN	
	
	

QUALITY	AND	QUALIFICATIONS	IRELAND	
EXAMINATION	

	
	
	
	

	
OBJECT	ORIENTED	PROGRAMMING	

	
	
	
	
	
Lecturer(s):	 	 	 	 	 	 	 	 	
	 	 	 	 	
	
External	Examiner(s):		 	 	 	 	 	 	
	 	
	
	 	 	 	 	
	

	
Date:	 	 XXXXXXXX	 	 	 	 	 	 Time:		XXXXXXX	
	 	 	 	 	
	

	
THIS	PAPER	CONSISTS	OF	TWELVE	QUESTIONS	
TEN	QUESTIONS	TO	BE	ATTEMPTED	
ALL	QUESTIONS	CARRY	EQUAL	MARKS	
	
APPENDIX	AT	BACK	OF	EXAMINATION	PAPER	

19

QUESTION	1	

(a) Implement	a	class	called	Phone,	whose	constructor	and	public	methods	are	
listed	in	the	table	below.	Each	phone	has	attributes:	make,	colour	and	cost.	
These	attributes	have	types	String,	String,	double,	respectively.	

	
Method	 Semantics	

Phone(String	m,	String	c,	double	cst)	 Constructor	method	for	class	
make()	 Returns	the	make	of	the	phone	
colour()	 Returns	the	colour	of	the	phone	
cost()	 Returns	the	cost	of	the	phone	
toString()	 Returns	 a	 string	 representation	 of	 an	

instance	of	a	phone	
(6	marks)	

(b) Write	a	code	fragment	that	creates	two	instances	of	your	Phone	class	and	
then	 uses	 an	 if	 statement	 to	 determine	 the	 more	 expensive	 of	 the	 two	
phones.		

(4	marks)	

Total	(10	marks)	
QUESTION	2	

(a) Explain	the	difference	between	primitive	variables	and	reference	variables.	
The	code	fragment	given	below	initializes	variable	x	to	the	value	10.	Draw	
a	diagram	of	the	state	of	x	after	the	initialization.	
Integer	x	=	10;	

(4	marks)	
(b) Explain	why	the	method	player()	in	the	class	Player,	given	below,	violates	the	

rule	on	 encapsulation	 and	 the	method	 team()	does	 not.	 Re-write	method	
player()		so	that	encapsulation	is	preserved.	

class	Person{	
	 private	String	name;	
	 public	Person(String	n){name	=	n;}	
	 public	String	name(){return	name;}	
	 public	void	setName(String	n){name	=	n;}	
}	
class	Player{	
	 private	Person	plr;	
	 private	String	team;	
	 public	Player(String	n,	String	t){plr	=	new	Person(n);	team	=	t;}	
	 public	Person	player(){return	plr;}	
	 public	String	team(){return	team;}	
}	

	(6	marks)	
Total	(10	marks)	

	

20

QUESTION	3	

(a) The	program	Q3,	listed	below,	creates	an	array	of	3	Person	instances.	Your	
task	is	to	draw	diagrams	of	the	state	of	the	array	after	execution	of	the	line	

		 	 Person	dt[]	=	{new	Person("John",21),	
																											new	Person("Nora",19),	
																											new	Person("Sheila",22)};	
	
		and,	again,	after	execution	of	the	code:	

		
	 	 	 for(Person	p	:	dt)	p.setAge(p.age()+1);	

	(8	marks)	

(b) You	should	also	state	the	output	from	a	single	execution	of	the	program.	
class	Q3{	
			public	static	void	main(String[]	args)	{	
	 	 	 Person	dt[]	=	{new	Person("John",21),	
																														new	Person("Nora",19),	
																														new	Person("Sheila",22)};	
			 	 for(Person	p:	dt)	System.out.println(p);	
			 	 for(Person	p	:	dt)	p.setAge(p.age()+1);	
			 	 for(Person	p:	dt)	System.out.println(p);	 	 				
				}	
}	
class	Person{	
	private	String	name;	
	private	int	age;	
	public	Person(String	n,	int	a){name	=	n;	age	=	a;}	
	public	int	age(){return	age;}	
	public	void	setAge(int	x){age	=	x;}	
	public	String	toString(){return	name+"	"+age;}	
}	

(2	marks)	

	Total	(10	marks)	

QUESTION	4	

(a) New	classes	can	be	constructed	from	existing	classes	by	using	composition	
or	inheritance.	Explain	each	of	these	terms.	

(4	marks)	
(b) Given	 is	 the	 class	 TD	 that	 has	 a	 name	 and	 a	 constituency.	Write	 a	 class	

Minister,	 using	 either	 inheritance	 or	 composition,	 that	 is	 a	 TD	 with	 a	
department.	You	may	 implement	 the	department	name	as	a	 String.	Class	
Minister	must	have	a	toString	method.	

class	TD{	
	 private	String	name;	
	 private	String	constituency;	
	 public	TD(String	n,	String	c){	
	 	 name	=	n;	constituency	=	c;	
	 }	

21

	 public	String	name(){return	name;}	
	 public	String	constituency(){return	constituency;}	
	 public	String	toString(){return	name+"	"+constituency;}	
}		

	(6	marks)	

	Total	(10	marks)	
QUESTION	5	

(a) In	relation	to	the	primitive	type	int	and	class	Integer	explain	the	meaning	of	
the	terms	autoBoxing	and	autoUnboxing.		

(3	marks)	

(b) What	are	static	methods?	Explain	the	difference	between	things	that	belong	
to	the	class	itself	and	those	that	belong	to	an	instance	of	the	class.		

(4	marks)	

(c) When	you	try	to	compile	the	class	Test	below	the	compiler	will	generate	the	
following	error	message:	non-static	variable	y	cannot	be	referenced	from	a	
static	context.	Explain	why	it	generates	this	message.	

	class	Test{	
				private	static	int	x	=	0;	
				private	int	y;	
			Test(int	kk){y	=	kk;}	
				public	static	void	modX(){x	=	y;}		
}	

(3	marks)	

Total	(10	marks)	

	
QUESTION	6	
(a) Instances	 of	 both	 the	 class	 String	 and	 the	 class	 Integer	 are	 said	 to	 be	

immutable.	Explain	what	this	means.	
(3	marks)	

(b) Given	below	 is	 the	 class	Circle.	Explain	why	 this	 class	 is	not	 immutable.	
What	changes	must	be	made	to	the	class	to	make	it	immutable?	Re-write	it	
by	making	the	necessary	changes.	

class	Circle{	

	 private	int	x,y;	

	 private	int	radius;	

	 public	Circle(int	a,	int	b,	int	r){	

	 	 x	=	a;	y	=	b;	radius	=	r;	

	 }	

	 public	int	radius(){return	radius;}	

22

	 public	void	move(int	a,	int	b){	

	 	 x	=	x	+	a;	y	=	y	+	b;	

	 }	

}							

(7	marks)	

Total	(10	marks)	

QUESTION	7	

(a) The	Object	class	is	said	to	be	the	base	class	of	all	classes.	Explain	what	this	
means?	Name	any	two	methods	that	are	inherited	from	the	Object	class.	

(3	marks)	

(b) Given	 is	 the	 abstract	 class	 Employee	 defined	 below.	 It	 has	 two	 abstract	
methods	monthlySalary	and	monthlyTax.	

abstract	class	Employee{	
	 private	String	name;	
	 Employee(String	n){name	=	n;}	
	 public	String	name(){return	name;}	
	 public	abstract	double	monthlySalary();	
	 public	abstract	double	monthlyTax(double	rate);	
	 public	String	toString(){return	name;}		
}	
A	manager	 is	 an	 employee	 that	 has	 a	 yearly	 salary.	 Using	 the	 abstract	 class	
Employee	 write	 a	 class	 to	 encapsulate	 a	 manager.	 The	 monthly	 salary	 is	
calculated	 by	 dividing	 the	 yearly	 salary	 by	 12	 and	 tax	 is	 calculated	 by	
multiplying	the	monthly	salary	by	the	given	rate.	You	must	also	override	the	
toString	method	in	the	Employee	class.	

(7	marks)	

Total	(10	marks)	

QUESTION	8	

(a) Given	below	is	a	class	Player	that	has	attributes	name	and	team.	This	class	
must	 implement	 the	 Comparable	 interface.	 Your	 task	 is	 to	 implement	 the	
method	for	this	interface.	The	ordering	is	based	on	player	name	only.	

final	class	Player	implements	Comparable<Player>{	
	 private	String	name;	
	 private	String	team;	
	 Player(String	n,	String	t){	
	 	 name	=	n;	team	=	t;		
	 }	
	 Player(String	n,	String	t,	int	sc){	
	 	 name	=	n;	team	=	t;	scored	=	sc;	
	 }	
	 public	String	name(){return	name;}	

23

	 public	String	team(){return	team;}	
}	

	(5	marks)	

(b) The	word	final	is	used	before	class	Player	above.	What	does	this	word	mean?	

(2	marks)	

(c) Tickets	consist	of	four	colours:	green,	blue,	red	and	white.	Each	ticket	has	
an	associated	price:	green	costs	€5,	blue	costs	€10,	red	costs	€20	and	white	
costs	€30.	The	enumerated	class	Ticket	is	given.	Your	task	is	to	write	a	value	
method	that	returns	its	cost.		

enum	Ticket{	
	 GREEN,BLUE,RED,WHITE;	
	 public	int	value(){	…	}	
}	

(3	marks)	

Total	(10	marks)	

	

QUESTION	9	

Given	below	is	a	class	that	represents	an	account	with	three	attributes:	account	
number	accNum,	name	and	balance.		

class	Account{	
	 private	String	accNum;	
	 private	String	name;	
	 private	double	balance;	
	 Account(String	n,	String	nm,	double	b){	
	 	 accNum	=	n;	name	=	nm;	balance	=	b;	
	 }	
	 String	name(){return	name;}	
	 String	accNumber(){return	accNum;}	
	 double	balance(){return	balance;}	
	 public	String	toString(){return	name+"	"+accNum+"	"+balance;}	
}	
	
Your	task	is	to	write,	for	the	class	Account,	the	following	methods:	

equals,	 that	 returns	 true	 if	 two	 instances	 of	 the	 account	 class	 have	 the	 same	
account	number;	(6	marks)	

hashCode,	that	returns	a	hash	code	for	an	instance	of	the	class.(4	marks)	

Total	(10	marks)	

	

	 	

24

QUESTION	10	

The	 class	 Accounts,	 outlined	 below,	 uses	 a	 HashSet	 to	 manage	 a	 collection	 of	
Accounts.	The	public	methods	of	this	class	are	given	and	your	task	is	to	write	the	
code	for	each	of	these.	The	description	of	the	task	for	each	method	is	described	as	
a	comment	in	the	code	below.		

(Class	Account	is	described	in	Question	9	above	and	you	may	assume	that	class	
Account	has	an	equals	and	a	hashCode	method)	

class	Accounts{	
	 private	HashSet<Account>	data	=	new	HashSet<>();	
	 public	void	add(Account	ac){data.add(ac);}	
	 public	boolean	search(Account	ac){//seach	for	ac}	(2	marks)	
	 public	Account	get(String	num){	
	 	 //return	reference	to	account	that	has	account	number	num	
	 }	(2	marks)	
	 public	double	totalAmount(){	
	 	//calculate	total	of	all	balances	on	account	
	 }	(3	marks)	
	 public	HashSet<Account>	balanceInExcess(double	x){	
	 	 //return	set	of	accounts	that	have	a	balance	in	excess	of	x	
	 }	(3	marks)	
}	
	(See	Appendix	A	for	a	description	of	Set	methods).	
	

	(10	marks)	
	

QUESTION	11	

The	class	ListInteger,	outlined	below,	uses	an	ArrayList	to	manage	a	collection	of	
Integer	values.	The	public	methods	of	this	class	are	given	and	your	task	is	to	write	
the	code	for	each	of	these.	The	description	of	the	task	for	each	method	is	described	
as	a	comment	in	the	code	below.	

class	ListInteger{	
	 private	ArrayList<Integer>	lst;	
	 ListInteger(){lst	=	new	ArrayList<>();}	
	 public	void	add(List<Integer>	dt){//append	list	dt	to	lst}	(2	marks)	
	 public	void	addHead(Integer	x){//add	x	at	head	of	list	lst}	(2	marks)	
	 public	int	freq(Integer	x){	
	 		//count	the	frequency	of	occurrence	of	x	
	 }	(3	marks)	
	 public	Integer	max(){	
	 		//find	largest	value	in	list	lst	
	 }	(3	marks)	
}	
(See	Appendix	A	for	a	description	of	List	methods).	

	(10	marks)	

25

QUESTION	12	

(a) All	the	Collection	classes	are	generic.	What	does	the	term	generic	mean?	

(2	marks)	

(b) Explain	why	you	might	use	an	ArrayList	in	preference	to	an	array	when	you	
are	choosing	a	data	structure	for	your	data.	

(3	marks)	

(c) Using	methods	 from	 the	 Assert	 class	 listed	 in	Appendix	B	 complete	 the	
methods	 testInteresection	and	testUnion.	Two	sets	are	provided	for	use	 in	
your	test	code.	

class	SetTest{	
			TreeSet<Integer>	s1	=	new	TreeSet<>(Arrays.asList(2,3,4,5));	
			TreeSet<Integer>	s2	=	new	TreeSet<>(Arrays.asList(2,4,7));	
			@Test	
			public	void	testIntersection(){		…	}	
			@Test	
			public	void	testUnion(){	…	}	
}	

(5	marks)	

	Total	(10	marks)	

	 	

26

Appendix	A	
	
Constructor	 TreeSet<E>()	

TreeSet<E>(Collection)	
HashSet<E>()	
HashSet<E>(Collection)	

Insert	item,	duplicates	ignored	 add(E	x)	
Remove	item	 remove(E	x)	
Contains	item.	Used	to	check	if	the	
set	contains	an	instance	of	x.	

boolean	contains(E	x)	

Number	of	elements	in	the	set.	 int	size()	
Return	a	string	representation	of	
the	elements	in	the	set.	Only	works	
correctly	if	instances	of	the	type	
have	a	toString()	method	defined.	

toString()	

Returns	true	if	set	is	empty;	false	
otherwise	

boolean	isEmpty()	

Set	union	 addAll(Collection)	
Set	intersection	 retainAll(Collection)	
Set	difference	 removeAll(Collection)	
Subset	 boolean	containsAll(Collection)	
Remove	all	elements	 clear()	
Return	an	array	containing	all	of	the	
elements	in	the	set	

Object[]	toArray()	

Return	an	iterator	over	the	elements	
in	the	set.	Used	to	traverse	elements	
in	the	set.	

Iterator<E>	iterator()	

Constructor	 ArrayList<E>()	
ArrayList<E>(Collection)	
LinkedList<E>()	
LinkedList<E>(Collection)	

Append	item	 add(E	x)	
Remove	item	 remove(Object)	
Contains	item	 Boolean	contains(Object)	
Number	of	elements	 int	size()	
Convert	to	string	 toString()	
Empty	set	 Boolean	isEmpty()	
Remove	elements	 clear()	
Retrieve	element	given	index	value	 E	get(int	ind);	
Insert	element	at	index	 add(int	ind,	E	x);	
Change	element	at	index	 E	set(int	ind,	E	x);	
Remove	element	at	index	 E	remove(int	ind)	
Get	index	of	object	 int	indexOf(E	x);	

27

Additional	Methods	for	LinkedList	
class	

	

Add	new	element	at	head	of	list	 addFirst(E	x)	
Return	element	at	head	of	list	 E	getFirst()	
Remove	element	at	head	of	list	 E	removeFirst()	
	 	
	
	
	
	
	 	

28

Appendix	B	
Methods for Assert Class
	

Method	Name	 Semantics	
assertArrayEquals(boolean[]	expecteds,	
boolean[]	actuals)		

Asserts	that	two	boolean	arrays	
are	equal.	

assertArrayEquals(byte[]	expecteds,	byte[]	actuals)		
Asserts	that	two	byte	arrays	are	
equal.	

assertArrayEquals(char[]	expecteds,	
char[]	actuals)										

Asserts	that	two	char	arrays	are	
equal.	

assertArrayEquals(double[]	expecteds,	
double[]	actuals,	double	delta)											

Asserts	 that	 two	 double	 arrays	
are	equal.	

assertArrayEquals(float[]	expecteds,	 float[]	actuals,	
float	delta)		

Asserts	that	two	float	arrays	are	
equal.	

assertArrayEquals(int[]	expecteds,	
int[]	actuals)												

Asserts	 that	 two	 int	 arrays	 are	
equal.	

assertArrayEquals(long[]	expecteds,	
long[]	actuals)									

Asserts	that	two	long	arrays	are	
equal.	

assertArrayEquals(Object[]	expecteds,	
Object[]	actuals)					

Asserts	 that	 two	 object	 arrays	
are	equal.	

assertEquals(double	expected,	 double	actual,	
double	delta)												

Asserts	 that	 two	 doubles	 are	
equal	to	within	a	positive	delta.	

assertEquals(float	expected,	 float	actual,	
float	delta)												

Asserts	that	two	floats	are	equal	
to	within	a	positive	delta.	

assertEquals(long	expected,	long	actual)		 Asserts	that	two	longs	are	equal.	

assertEquals(Object	expected,	Object	actual)		
Asserts	 that	 two	 objects	 are	
equal.	

assertNotEquals(float	unexpected,	 float	actual,	
float	delta)		

Asserts	 that	 two	 floats	 are	 not	
equal	to	within	a	positive	delta.	

assertNotEquals(long	unexpected,	long	actual)							
Asserts	 that	 two	 longs	 are	 not	
equals.	

assertTrue(Boolean	condition)							 Asserts	that	condition	holds	

assertFalse(Boolean	condition)							 Asserts	 that	 condition	 does	 not	
hold.	

	
	
	

