
132

Module 14 Software Development 2

Module title Software Development 2
Module NFQ level (only if an NFQ level can be
demonstrated)

6

Module number/reference BSCH-SD2

Parent programme(s)
Bachelor of Science (Honours) in
Computing Science

Stage of parent programme Stage 2
Semester (semester1/semester2 if applicable) Semester 2
Module credit units (FET/HET/ECTS) ECTS
Module credit number of units 10
List the teaching and learning modes Direct, Blended
Entry requirements (statement of knowledge, skill and
competence)

Learners must have achieved
programme entry requirements.

Pre-requisite module titles BSCH-SD1
Co-requisite module titles None
Is this a capstone module? (Yes or No) No

Specification of the qualifications (academic, pedagogical
and professional/occupational) and experience required
of staff (staff includes workplace personnel who are
responsible for learners such as apprentices, trainees and
learners in clinical placements)

Qualified to as least a Bachelor of
Science (Honours) level in Computer
Science or equivalent and with a
Certificate in Training and Education
(30 ECTS at level 9 on the NFQ) or
equivalent.

Maximum number of learners per centre (or instance of
the module)

60

Duration of the module
One Academic Semesters, 12weeks
teaching

Average (over the duration of the module) of the contact
hours per week

2.5

Module-specific physical resources and support required
per centre (or instance of the module)

One class room with capacity for 60
learners along with one computer lab
with capacity for 25 learners for each
group of 25 learners

133

Analysis of required learning effort

Minimum ratio

teacher / learner
Hours

Effort while in contact with staff
 Classroom and demonstrations 1:60 8
 Monitoring and small-group teaching 1:25 12
 Other (specify) Hackathon 1:60 10
Independent Learning
 Directed e-learning
 Independent Learning 120
 Other hours (worksheets and assignments) 100
 Work-based learning – learning effort
Total Effort 250

Allocation of marks (within the module)

Continuous
assessment

Supervised
project

Proctored practical
examination

Proctored written
examination

Total

Percentage
contribution

20% 80% 100%

Module aims and objectives
The Software Development 2 module builds on the work completed in Software
Development 1. In that module the focus was on source code management using
version control systems. In this module the focus is again on developing a large piece
of work, using the learning from Software Development 1, but with a focus on
software testing and testing suites. They get the opportunity to work on a large-scale
project in a team dynamic. They are required to complete requirements analysis,
produce complete a software application, host said software on a code repository,
implement a testing suite, and to document the process.

They not only learn new technical skills such as software testing and requirements
analysis but also work as part of a team to develop a software product.

Teaching in this module is conducted mainly between the team of learners and the
lecturer. However, in the early stages of the process the faculty organise a number of
relevant seminars. Topics for these will outline how to preform requirement analysis
for the project, and how to systematically test the project to assure it is performing to
specification.

The skills that the learners develop in this module benefit them as they progress
through their degree and into their professional life.

134

Minimum intended module learning outcomes
On successful completion of this module, the learner will be able to:

1. Install, configure and utilize a testing framework for a software project

2. Use technical design and implementation skills

3. Produce comprehensive reports from software testing to feed into future
feature cycle

4. Write coherently and present information in a systematic manner to the
required academic level

5. Undertake a technical project and bring it to completion implementing a
rigorous testing framework

6. Document the project life-cycle from specification to implementation

Rationale for inclusion of the module in the programme and its contribution to the
overall MIPLOs
The module is the designed to expose the learners to a larger scale project than they
have experienced so far, it accumulates the skill and knowledge that the learner has
developed over the previous semester and combines that with a degree of
independent learning to enable learners to specify, design, and build a system that
accurately reflects a 2nd year standard of work. Appendix 1 of the programme
document maps MIPLOs to the modules through which they are delivered.

Information provided to learners about the module
Learners receive a programme handbook to include module descriptor, module
learning outcomes (MIMLO), class plan, assignment briefs, assessment strategy and
reading materials.

Module content, organisation and structure
Software Testing

Introduction
• What is Testing?
• Unit Testing
• Integration testing
• Continuous testing
• Regression testing

Unit Testing

• Installing and configuring a testing framework

Integration Testing
• Commit early, commit often

135

Continuous Testing
Regression Testing
Project Specification
Project Timeline

A series of 4 two-hour seminars are held over the first 4 weeks of semester 1, where
the usage of code management software is explained and demonstrated. In week 5,
the Learners will take part in a hackathon event to create a basic prototype for their
project. The learners are then given another week to review and refine their team’s
idea before it is approved by the faculty. The remaining time is dedicated to bringing
their project to competition. In the final week of the semester, the teams will present
their work to the faculty. During the project work period the teams with be required
to create an initial iteration of the system, and based on milestone reviews perform
two subsequent sets of bug reports and iterations.

Module teaching and learning (including formative assessment) strategy
The module is taught as a combination of seminars sessions and team meetings
between the lecturer and each team of learner. The seminar sessions discuss and
explain to learners the principles and challenges involved in correctly using code
management software.

Assessment is split into 5 elements.

• Worksheets on testing (20%)
• 3 iterations of the project (20%)
• 3 test reports after each review (20%)
• 3 milestone reviews (20%)
• Project Documentation (20%)

Timetabling, learner effort and credit
The module is timetabled as four 2 hour lectures and a series of meetings with
lecturer.

There are 28 contact hours made up of 4 lectures delivered over the first 4 weeks with
classes taking place in a classroom and 7 team meetings held over the last 7 weeks of
the semester. There is an 8-hour hackathon held in week 5. Between week 7 and
week 12 there will be a weekly 2-hour meeting time taking place in a project room.
The learner will need 97 hours of independent effort to further develop the project
that is proposed.

The team believes that 125 hours of learner effort are required by learners to achieve
the MIMLOs and justify the award of 5 ECTS credits at this stage of the programme.

136

Work-based learning and practice-placement
There is no work based learning or practice placement involved in the module.

E-learning
The college VLE is used to disseminate notes, advice, and online resources to support
the learners. The learners are also given access to Lynda.com as a resource for
reference.

Module physical resource requirements
Requirements are for a classroom for 60 learners equipped with a projector, and a
work area / project lab to hold regular meetings.

Reading lists and other information resources

Reading lists and other information resources
Beck, K. (2014) Test-driven Development by Example. Boston: Addison-Wesley.

Secondary Reading
Khan, R. and Das, A. (2018) Build Better Chatbots. Berkeley: Apress.

Shevat, A. (2017) Designing Bots: Creating Conversational Experiences. Boston:
O’Reilly.

Whitehead, R. (2001) Leading a Software Development Team. London: Addison
Wesley.

https://developer.amazon.com 3

Specifications for module staffing requirements
For each instance of the module, one lecturer qualified to at least Bachelor of Science
(Honours) in Computer Science or equivalent, and with a Certificate in Training and
Education (30 ECTS at level 9 on the NFQ) or equivalent.. Industry experience would
be a benefit but is not a requirement.

Learners also benefit from the support of the programme director, programme
administrator, learner representative and the Student Union and Counselling Service.

3 Last accessed 24/07/2018

137

Module Assessment Strategy
The assignments constitute the overall grade achieved, and are based on each
individual learner’s work. The continuous assessments provide for ongoing feedback
to the learner and relates to the module curriculum. The assessment of this module
is a combination of individual and group based assessment.

• Worksheets on source control (20%)
• 3 iterations of the project (20%)
• 3 test reports after each review (20%)
• 3 milestone reviews (20%)
• Project Documentation (20%)

No. Description MIMLOs Weighting

1

Worksheets on source control; the learner
submits a series of worksheets to demonstrate
knowledge in software testing. Individual
assessment

1,2,3 20%

2
Initial iteration project; learners develop an
initial prototype to test for future review.
Group assessment

1,2,3,4,6 20%

3

Second iteration project; based on first review
learner’s product a testing report and update
project features for future review. Group
assessment.

1,2,3,4,6 20%

4

Final iteration project; based on first review
learner’s product a testing report and update
project features for final demonstration. Group
assessment.

1-6 20%

5

Project Documentation; Learners submit a
comprehensive document that outlines the
research taken for this project, and documents
the implementation and testing process. Group
assessment.

2,4,6 20%

All repeat work is capped at 40%.

Sample assessment materials
Note: All assignment briefs are subject to change in order to maintain current content.

138

Testing Worksheets
Worksheet 1 Introduction to Testing

Introduction:
In this worksheet you will be introduced to writing unit tests for the first time. Here
you will practice how to write tests, run them, and write code to satisfy the tests. In
the following worksheet we will integrate this into an SCM (Source Code Manager) to
show the full process of how Test Driven Development works. It is deliberately
structured such that you write your tests first followed by the code that should satisfy
them. This is the standard way that testing works.
A well written test will show that the person writing the test understands how the
method or item to be tested functions. If the test is correct then the implementation
of the method or item should satisfy the test. The test should not be adjusted to satisfy
the code.
For assessment you will be required to submit both your code and unit tests.
Tasks:
01) Create a JUnit test file called “MyMathTest.java” and a java file “MyMath.java”. In
your JUnit test add the following four stub methods

• testAdd()
• testSubtract()
• testMultiply()
• testDivide()

In the regular java file add in the following stub methods
• int MyAdd(int a, int b)
• int MySubtract(int a, int b)
• int MyMultiply(int a, int b)
• int MyDivide(int a, int b)

02) Write five test cases for each of the unit test methods that call the appropriate
methods in the java file. The unit tests should still fail at this point as you are writing
the unit test first
03) Write the four methods in MyMath.java you may only move onto the next
implementation once each unit test has been satisfied.
04) Create a JUnit test file called “GeometryTest.java” and a java file “Geometry.java”.
in the JUnit test add the following four stub methods

• testAreaRect()
• testPerimeterRect()
• testVolumeSphere()
• testSurfaceAreaSphere()

In the regular java file add the following stub methods
• float areaRect(float width, float height)

139

• float perimeterRect(float width, float height)
• float volumeSphere(float radius)
• float surfaceAreaSphere(float radius)

05) Write four test cases for each test method that calls the appropriate method in
the java file. You should not write code in the regular java file for now. As you are
dealing with floating point numbers. Your margin for error (epsilon) is 0.1
06) Write the code for the methods in Geometry.java You may only move onto the
next method once the unit test has been satisfied.

Worksheet 2 Introduction to Test Driven Development with Git

Introduction:
In this worksheet you will be introduced to how a Source Code Manager should be
used and interacted with in combination with Test Driven Development. Combining
the concept of Commit Early, Commit Often you will be required to write a unit test
first then write the code that satisfies said unit test later. Once both are complete the
unit test and code should be committed and pushed to the repository.
For assessment you will be required to submit a link to a gitlab project (college only
gitlab) containing all of your work. Note that it is an absolute requirement of the
worksheet that you commit after each completion of a unit test and implementation.
You will lose marks if your repository does not reflect this.
All of the methods that you must implement below must use floating point values as
input and output. Your epsilon for each method is 0.1. Each unit test must perform at
least three tests on the method involved.
Tasks:
01) Create a fresh gitlab repository. Make sure to grant the lecturer access to the
repository.
02) Create two files “Geometry3DTest.java” and “Geometry3D.java” and commit
them to the repository.
03) Add a unit test for calculating the volume of a cuboid and add the appropriate
implementation.
04) Add a unit test for calculating the surface area of a cuboid and add the appropriate
implementation.
05) Add a unit test for calculating the volume of a square based pyramid and add the
appropriate implementation.
06) Add a unit test for calculating the surface area of a square based pyramid and add
the appropriate implementation.
07) Add a unit test for calculating the volume of a tetrahedron and add the appropriate
implementation
08) Add a unit test for calculating the surface area of a tetrahedron and add the
appropriate implementation.

140

Worksheet 3: Introduction to Integration testing

Introduction:
So far you’ve been introduced to Unit testing where testing has taken place on
individual classes and individual methods. The next step after Unit testing is to
perform integration testing where classes and modules are aggregated together to
see if integration works as designed. For the purposes of this testing we will take the
code written in the previous worksheet and turn it into an inheritance structure that
is polymorphic. You will have a generic Shape class (abstract in nature) and the
subclasses Cuboid, SquareBasedPyramid, and Tetrahedron. The shape class will
declare abstract volume(), surfaceArea() and description() methods that return floats
but nothing more. description() should return a string saying what this shape is e.g.
“Cuboid”, “Tetrahedron” etc.
You are required to write unit tests for the three subclasses and then write an
integration test that tests the polymorphic functionality of the Shape class.
For assessment you are required to submit all of your written code. As before your
epsilon for your floating point tests is 0.1 and you are required to write three tests for
each unit test unless otherwise specified.
Tasks:
01) Create a Shape class and a ShapeTest unit test. For now write the abstract method
stubs for the Shape class. You will not be able to write a unit test for the Shape class
until you have at least one subclass to work with.
02) Create a Cuboid class that subclasses Shape and a CuboidTest unit test. Write the
tests and code for each method. Do not move onto the next method until each unit
test is satisfied.
03) Create a SquareBasedPyramid class that subclasses Shape and a
SquareBasedPyramidTest unit test. Write the tests and code for each method. Do not
move onto the next method until each unit test is satisfied.
04) Create a Tetrahedron class that subclasses Shape and a TetrahedronTest unit test.
Write the tests and code for each method. Do not move onto the next method until
each unit test is satisfied.
05) In ShapeTest write a single integration test that generates an array of 6 Shape
objects. There should be two of each type of shape in the array in any permutation.
Using the abstract methods alone (no introspection allowed) check that the right
volume, surface area, and description is returned.

Project Specification
Based on your knowledge of chatbots and Amazon Alexa skills from the hackathon,
develop an Alexa skill that interacts with a custom made chatbot. The goal of your
chatbot is to plan your clothing requirements for a trip that will visit 5 locations in 3

141

days. The bot should be able to review the weather for each of these locations and
suggest appropriate clothing for each location for the day that you will visit.

Your team must indicate which team member wrote each method and document its
functionality. Each team needs to create a repository for the chatbot and add the
lecturer to the project as a member.

There must be evidence of a testing framework for each feature of the chatbot.

There must be evidence that all members have both pulled code from the repository
and committed changes to the project at each milestone review.

Milestone reviews
The work period between each milestone is 2 weeks. At the end of the period the team
will present their code, pull / commit logs, and a short report to the lecturer for a code
interview. Once the interviews have been completed, the team will progress onto the
next features to implement. Based on each milestone review the team must produce
a testing framework for the features in the next section of the lifecycle.

There will be a total of 3 review cycles before a final league event. Each review cycle
will follow the same pattern, but the team must clearly indicate what changes have
been made since the previous review.

